Lauren M Byrne

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7971111/publications.pdf

Version: 2024-02-01

30	1,097	15	20
papers	citations	h-index	g-index
36	36	36	1306
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington's disease: a retrospective cohort analysis. Lancet Neurology, The, 2017, 16, 601-609.	10.2	272
2	Evaluation of mutant huntingtin and neurofilament proteins as potential markers in Huntington's disease. Science Translational Medicine, 2018, 10, .	12.4	134
3	Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis. Lancet Neurology, The, 2020, 19, 502-512.	10.2	122
4	Neurofilament light protein in blood predicts regional atrophy in Huntington disease. Neurology, 2018, 90, e717-e723.	1.1	65
5	Mutant huntingtin and neurofilament light have distinct longitudinal dynamics in Huntington's disease. Science Translational Medicine, 2020, 12, .	12.4	64
6	Cerebrospinal Fluid Biomarkers for Huntington's Disease. Journal of Huntington's Disease, 2016, 5, 1-13.	1.9	60
7	Cerebrospinal fluid total tau concentration predicts clinical phenotype in Huntington's disease. Journal of Neurochemistry, 2016, 139, 22-25.	3.9	58
8	Cerebrospinal Fluid Inflammatory Biomarkers Reflect Clinical Severity in Huntington's Disease. PLoS ONE, 2016, 11, e0163479.	2.5	58
9	Validation of Ultrasensitive Mutant Huntingtin Detection in Human Cerebrospinal Fluid by Single Molecule Counting Immunoassay. Journal of Huntington's Disease, 2017, 6, 349-361.	1.9	48
10	Huntington's disease mice and human brain tissue exhibit increased G3BP1 granules and TDP43 mislocalization. Journal of Clinical Investigation, 2021, 131, .	8.2	38
11	Mutant Huntingtin Is Cleared from the Brain via Active Mechanisms in Huntington Disease. Journal of Neuroscience, 2021, 41, 780-796.	3.6	37
12	Cerebrospinal fluid neurogranin and TREM2 in Huntington's disease. Scientific Reports, 2018, 8, 4260.	3.3	25
13	Biofluid Biomarkers in Huntington's Disease. Methods in Molecular Biology, 2018, 1780, 329-396.	0.9	21
14	Characterizing White Matter in Huntington's Disease. Movement Disorders Clinical Practice, 2020, 7, 52-60.	1.5	20
15	Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington's disease. Journal of Neurochemistry, 2021, 158, 539-553.	3.9	18
16	A Remote Digital Monitoring Platform to Assess Cognitive and Motor Symptoms in Huntington Disease: Cross-sectional Validation Study. Journal of Medical Internet Research, 2022, 24, e32997.	4.3	15
17	Brain-derived neurotrophic factor in cerebrospinal fluid and plasma is not a biomarker for Huntington's disease. Scientific Reports, 2021, 11, 3481.	3.3	12
18	Neurofilament Light Protein as a Potential Blood Biomarker for Huntington's Disease in Children. Movement Disorders, 2022, 37, 1526-1531.	3.9	9

#	Article	IF	CITATIONS
19	Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease. PLoS ONE, 2020, 15, e0233820.	2.5	8
20	Cerebrospinal fluid flow dynamics in Huntington's disease evaluated by phase contrast <scp>MRI</scp> . European Journal of Neuroscience, 2019, 49, 1632-1639.	2.6	5
21	D4â€Prediction of huntington's disease phenotype by cerebrospinal fluid biomarkers of inflammation and cell death. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, A35.1-A35.	1.9	O
22	D10â€Neurofilament light protein in blood predicts regional atrophy in huntington's disease. , 2018, , .		O
23	D09â€Parallel evaluation of mutant huntingtin and neurofilament light as biomarkers for huntington's disease: the hd-csf study. , 2018, , .		O
24	F05â€Biological and clinical characteristics of gene carriers far from predicted onset in the hd-yas study: a cross-sectional analysis. , 2021, , .		0
25	E07â€Cerebrospinal fluid flow dynamics in huntington's disease using phase contrast MRI: a pilot cross-sectional study. , 2018, , .		O
26	D08â€Neurofilament light protein in blood as a potential biomarker of neurodegeneration in hungtington's disease: a retrospective cohort analysis. , 2018, , .		0
27	Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease. , 2020, 15, e0233820.		O
28	Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease. , 2020, 15, e0233820.		0
29	Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease. , 2020, 15, e0233820.		O
30	Cerebrospinal fluid endo-lysosomal proteins as potential biomarkers for Huntington's disease. , 2020, 15, e0233820.		0