Ming Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7970104/publications.pdf

Version: 2024-02-01

89	1,650	22	35
papers	citations	h-index	g-index
89	89	89	1121
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Operational modal analysis based dynamic parameters identification in milling of thin-walled workpiece. Mechanical Systems and Signal Processing, 2022, 167, 108469.	8.0	15
2	Modelling of nonlinear and dual-modulus characteristics and macro-orthogonal cutting simulation of unidirectional Carbon/Carbon composites. Composite Structures, 2022, 280, 114928.	5.8	3
3	Heterologous overexpression of StERF3 triggers cell death in Nicotiana benthamiana. Plant Science, 2022, 315, 111149.	3.6	4
4	An accurate detection of tool wear type in drilling process by applying PCA and one-hot encoding to SSA-BLSTM model. International Journal of Advanced Manufacturing Technology, 2022, 118, 3897-3916.	3.0	10
5	A new method for prediction of cutting force considering the influence of machine tool system and tool wear. International Journal of Advanced Manufacturing Technology, 2022, 120, 1843-1852.	3.0	4
6	Tool wear prediction at different cutting edge locations for ball-end cutter in milling of Ni-based superalloy freeform surface part. International Journal of Advanced Manufacturing Technology, 2022, 120, 2961-2977.	3.0	5
7	Cutting force prediction between different machine tool systems based on transfer learning method. International Journal of Advanced Manufacturing Technology, 2022, 121, 619-631.	3.0	3
8	A <i>Phytophthora </i> effector promotes homodimerization of host transcription factor StKNOX3 to enhance susceptibility. Journal of Experimental Botany, 2022, 73, 6902-6915.	4.8	9
9	Dynamic modeling and stability prediction in milling process of thin-walled workpiece with multiple structural modes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2021, 235, 2205-2218.	2.4	11
10	A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing. Journal of Manufacturing Systems, 2021, 58, 16-32.	13.9	81
11	Position dependent vibration evaluation in milling of thin-walled part based on single-point monitoring. Measurement: Journal of the International Measurement Confederation, 2021, 171, 108810.	5.0	13
12	Dynamic Response Prediction and Control for Machining Process. Research on Intelligent Manufacturing, $2021, 135-166$.	0.3	0
13	Machining process monitoring and application: a review. Journal of Advanced Manufacturing Science and Technology, 2021, 1, 2021001-2021001.	1.1	7
14	A Model Reconstruction Method of Blade Repair Based on Linear Combination. International Journal of Precision Engineering and Manufacturing, 2021, 22, 383-394.	2.2	9
15	A general method for calibration of milling force coefficients and cutter runout parameters simultaneously for helical end milling. International Journal of Advanced Manufacturing Technology, 2021, 116, 2989-2997.	3.0	4
16	Position-oriented process monitoring in milling of thin-walled parts. Journal of Manufacturing Systems, 2021, 60, 360-372.	13.9	26
17	Machining Process Monitoring and the Data Processing Method. Research on Intelligent Manufacturing, 2021, , 45-76.	0.3	1
18	Learning and Optimization of Process Model. Research on Intelligent Manufacturing, 2021, , 77-134.	0.3	0

#	Article	IF	CITATIONS
19	Phytophthora infestans RXLR effector Pi04089 perturbs diverse defense-related genes to suppress host immunity. BMC Plant Biology, 2021, 21, 582.	3.6	5
20	Tool Wear Monitoring for Complex Part Milling Based on Deep Learning. Applied Sciences (Switzerland), 2020, 10, 6916.	2.5	38
21	A new in-processes active control method for reducing the residual stresses induced deformation of thin-walled parts. Journal of Manufacturing Processes, 2020, 59, 316-325.	5.9	30
22	Milling distortion prediction for thin-walled component based on the average MIRS in specimen machining. International Journal of Advanced Manufacturing Technology, 2020, 111, 3379-3392.	3.0	17
23	A dynamic cutting force model for transverse orthogonal cutting of unidirectional carbon/carbon composites considering fiber distribution. Composite Structures, 2020, 251, 112668.	5.8	13
24	Optimization of varying-parameter drilling for multi-hole parts using metaheuristic algorithm coupled with self-adaptive penalty method. Applied Soft Computing Journal, 2020, 95, 106489.	7.2	16
25	Milling dynamic model based on rotatory Euler–Bernoulli beam model under distributed load. Applied Mathematical Modelling, 2020, 83, 266-283.	4.2	7
26	Machining vibration monitoring based on dynamic clamping force measuring in thin-walled components milling. International Journal of Advanced Manufacturing Technology, 2020, 107, 2211-2226.	3.0	18
27	Investigation of Tool Wear and Chip Morphology in Dry Trochoidal Milling of Titanium Alloy Ti–6Al–4V. Materials, 2019, 12, 1937.	2.9	33
28	Geometric modelling of thin-walled blade based on compensation method of machining error and design intent. Journal of Manufacturing Processes, 2019, 44, 327-336.	5.9	33
29	A novel in-process machining deformation perception and control method*., 2019, , .		1
30	Mechanistic modelling of worn drill cutting forces with drill wear effect coefficients. Procedia CIRP, 2019, 82, 2-7.	1.9	8
31	Coral-like Ni _x Co _{1â^'x} Se ₂ for Na-ion battery with ultralong cycle life and ultrahigh rate capability. Journal of Materials Chemistry A, 2019, 7, 3933-3940.	10.3	85
32	Four-axis trochoidal toolpath planning for rough milling of aero-engine blisks. Chinese Journal of Aeronautics, 2019, 32, 2009-2016.	5.3	51
33	Modelling of the Porousness inside 2.5D Carbon/Carbon Composites. Procedia CIRP, 2019, 85, 43-48.	1.9	1
34	A GPU-based tool parameters optimization and tool orientation control method for four-axis milling with ball-end cutter. International Journal of Advanced Manufacturing Technology, 2019, 102, 1107-1125.	3.0	4
35	Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2019, 141, .	2.2	11
36	A new approach to geometric error modeling and compensation for a three-axis machine tool. International Journal of Advanced Manufacturing Technology, 2019, 102, 1249-1256.	3.0	21

#	Article	IF	Citations
37	Prediction of distortion induced by machining residual stresses in thin-walled components. International Journal of Advanced Manufacturing Technology, 2018, 95, 4153-4162.	3.0	33
38	A wireless instrumented milling cutter system with embedded PVDF sensors. Mechanical Systems and Signal Processing, 2018, 110, 556-568.	8.0	102
39	On-line cutting force coefficients identification for bull-end milling process with vibration. Measurement: Journal of the International Measurement Confederation, 2018, 125, 243-253.	5.0	15
40	Multi-axis variable depth-of-cut machining of thin-walled workpieces based on the workpiece deflection constraint. CAD Computer Aided Design, 2018, 100, 14-29.	2.7	30
41	Optimization of machining strip width using effective cutting shape of flat-end cutter for five-axis free-form surface machining. International Journal of Advanced Manufacturing Technology, 2018, 94, 2623-2633.	3.0	16
42	Improving tool life in multi-axis milling of Ni-based superalloy with ball-end cutter based on the active cutting edge shift strategy. Journal of Materials Processing Technology, 2018, 252, 105-115.	6.3	54
43	Identification of cutting force coefficients in machining process considering cutter vibration. Mechanical Systems and Signal Processing, 2018, 103, 39-59.	8.0	57
44	Analysis on the Correlation between Plunge Milling Parameters and Plunge Milling Force and Force Coefficient. , $2018, $		0
45	High Performance Cutting of Titanium Alloy Based on the Thermo-mechanical coupling effect. Procedia CIRP, 2018, 77, 126-129.	1.9	4
46	Time-position mapping method for monitoring data and cutting position. , 2018, , .		0
47	Vibrations of Flat-End Cutter Entering Workpiece Process: Modeling, Simulations, and Experiments. Shock and Vibration, 2018, 2018, 1-23.	0.6	4
48	Cutting Forces Measurement for Milling Process by Using Working Tables with Integrated PVDF Thin-Film Sensors. Sensors, 2018, 18, 4031.	3.8	20
49	Iterative Learning Method for Drilling Depth Optimization in Peck Deep-Hole Drilling. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2018, 140, .	2.2	17
50	A force-measuring-based approach for feed rate optimization considering the stochasticity of machining allowance. International Journal of Advanced Manufacturing Technology, 2018, 97, 2545-2556.	3.0	12
51	Image Skeleton and GA Based Tool Selection for 2 1/2-Axis Rough Milling. IEEE Access, 2018, 6, 32566-32575.	4.2	1
52	Radio network-aware edge caching for video delivery in MEC-enabled cellular networks. , 2018, , .		19
53	Analytical Modeling, Design and Performance Evaluation of Chatter-Free Milling Cutter With Alternating Pitch Variations. IEEE Access, 2018, 6, 32367-32375.	4.2	9
54	On the Machinability and Surface Finish of Superalloy GH909 Under Dry Cutting Conditions. Materials Research, 2018, 21, .	1.3	6

#	Article	IF	CITATIONS
55	A GPU-Accelerated Approach for Collision Detection and Tool Posture Modification in Multi-Axis Machining. IEEE Access, 2018, 6, 35132-35142.	4.2	9
56	Chip evacuation force modelling for deep hole drilling with twist drills. International Journal of Advanced Manufacturing Technology, 2018, 98, 3091-3103.	3.0	18
57	Stability improvement and vibration suppression of the thin-walled workpiece in milling process via magnetorheological fluid flexible fixture. International Journal of Advanced Manufacturing Technology, 2017, 88, 1231-1242.	3.0	37
58	Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V. Chinese Journal of Mechanical Engineering (English Edition), 2017, 30, 53-59.	3.7	19
59	Tool posture dependent chatter suppression in five-axis milling of thin-walled workpiece with ball-end cutter. International Journal of Advanced Manufacturing Technology, 2017, 91, 287-299.	3.0	15
60	Two Unprecedented POM-Based Inorganic–Organic Hybrids with Concomitant Heteropolytungstate and Molybdate. Inorganic Chemistry, 2017, 56, 2481-2489.	4.0	76
61	Numerical and Empirical Modelling of Machining-induced Residual Stresses in Ball end Milling of Inconel 718. Procedia CIRP, 2017, 58, 7-12.	1.9	18
62	Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study. Sensors, 2016, 16, 1470.	3.8	22
63	Time-domain modeling of a cutter exiting a workpiece in the slot milling process. Chinese Journal of Aeronautics, 2016, 29, 1852-1858.	5.3	18
64	Cutting Force Prediction in Four-axis Milling of Curved Surfaces with Bull-nose End Mill. Procedia CIRP, 2016, 56, 100-104.	1.9	5
65	Feedrate optimization for worn cutter with measured cutting force in rough milling. , 2016, , .		4
66	Effects of cutting parameters on tool insert wear in end milling of titanium alloy Ti6Al4V. Chinese Journal of Mechanical Engineering (English Edition), 2016, , .	3.7	3
67	Barrel cutter design and toolpath planning for high-efficiency machining of freeform surface. International Journal of Advanced Manufacturing Technology, 2016, 85, 2495-2503.	3.0	39
68	Optimization of Barrel Cutter for Five-axis Flank-milling Based on Approximation of Tool Envelope Surface. Computer-Aided Design and Applications, 2015, 12, 717-722.	0.6	8
69	Kinematic analysis and feedrate optimization in six-axis NC abrasive belt grinding of blades. International Journal of Advanced Manufacturing Technology, 2015, 79, 405-414.	3.0	28
70	Milling Force Modeling of Worn Tool and Tool Flank Wear Recognition in End Milling. IEEE/ASME Transactions on Mechatronics, 2015, 20, 1024-1035.	5.8	55
71	Chatter stability prediction in four-axis milling of aero-engine casings with bull-nose end mill. Chinese Journal of Aeronautics, 2015, 28, 1766-1773.	5. 3	31
72	Modeling and Cutting Path Optimization of Shallow Shell Considering its Varying Dynamics During Machining. Procedia CIRP, 2015, 31, 521-526.	1.9	8

#	Article	IF	Citations
73	Localization of freeform surface workpiece with particle swarm optimization algorithm., 2014,,.		4
74	Tool flank wear recognition based on the variation of milling force vector in end milling. , 2014, , .		1
75	Toolpath dependent chatter suppression in multi-axis milling of hollow fan blades with ball-end cutter. International Journal of Advanced Manufacturing Technology, 2014, 72, 643-651.	3.0	36
76	Effects of mesoporous silica particles on the emulsion polymerization of methyl methacrylate. Polymer Engineering and Science, 2014, 54, 2746-2752.	3.1	9
77	Prediction and Experimental Validation of Cutting Force for Bull-Nose End Mills with Lead Angle. Advances in Mechanical Engineering, 2014, 6, 650215.	1.6	2
78	Cutting force prediction for circular end milling process. Chinese Journal of Aeronautics, 2013, 26, 1057-1063.	5.3	61
79	Mechanistic identification of cutting force coefficients in bull-nose milling process. Chinese Journal of Aeronautics, 2013, 26, 823-830.	5.3	46
80	Collision and interference correction for impeller machining with non-orthogonal four-axis machine tool. International Journal of Advanced Manufacturing Technology, 2013, 68, 693-700.	3.0	17
81	Preparation and properties of soapless poly(styrene–butyl acrylate–acrylic acid)/SiO2 composite emulsion. Iranian Polymer Journal (English Edition), 2012, 21, 289-296.	2.4	11
82	Tool Path Generation for Clean-up Machining of Impeller by Point-searching Based Method. Chinese Journal of Aeronautics, 2012, 25, 131-136.	5.3	16
83	Clean-up Tool-path Generation for Multi-patch Solid Model by Searching Approach. , 2008, , 365-374.		1
84	Toolpath Generation for Four-Axis Rough Milling of Sculptured Surface Turbine Blade. Lecture Notes in Computer Science, 2008, , 887-895.	1.3	2
85	Modeling and Analysis Effects of Material Removal on Machining Dynamics in Milling of Thin-Walled Workpiece. Advanced Materials Research, 0, 223, 671-678.	0.3	5
86	Deformation Control and Chatter Suppression in 5-Axis Milling of Thin-Walled Blade. Advanced Materials Research, 0, 188, 314-318.	0.3	1
87	Investigation of Trochoidal Milling Nickel-Based Superalloy. Materials Science Forum, 0, 723, 332-336.	0.3	17
88	Position-varying surface roughness prediction method considering compensated acceleration in milling of thin-walled workpiece. Frontiers of Mechanical Engineering, 0 , 1 .	4.3	10
89	A comparative study of force models in monitoring the flank wear using the cutting force coefficients. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 0, , 095440622211117.	2.1	2