Dusko Ilic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7969449/publications.pdf

Version: 2024-02-01

208 papers 12,086 citations

47006 47 h-index 108 g-index

214 all docs

214 docs citations

times ranked

214

12930 citing authors

#	Article	IF	CITATIONS
1	Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature, 1995, 377, 539-544.	27.8	1,698
2	FAK integrates growth-factor and integrin signals to promote cell migration. Nature Cell Biology, 2000, 2, 249-256.	10.3	1,108
3	Self-organization of the human embryo in the absence of maternal tissues. Nature Cell Biology, 2016, 18, 700-708.	10.3	516
4	Differential regulation of cell motility and invasion by FAK. Journal of Cell Biology, 2003, 160, 753-767.	5.2	484
5	Extracellular Matrix Survival Signals Transduced by Focal Adhesion Kinase Suppress p53-mediated Apoptosis. Journal of Cell Biology, 1998, 143, 547-560.	5.2	459
6	Impaired proliferation of peripheral B cells and indication of autoimmune disease in lyn-deficient mice. Immunity, 1995, 3, 549-560.	14.3	454
7	Trophoblast L-Selectin-Mediated Adhesion at the Maternal-Fetal Interface. Science, 2003, 299, 405-408.	12.6	437
8	Nuclear FAK Promotes Cell Proliferation and Survival through FERM-Enhanced p53 Degradation. Molecular Cell, 2008, 29, 9-22.	9.7	421
9	Human pluripotent stem cells recurrently acquire and expand dominant negative P53 mutations. Nature, 2017, 545, 229-233.	27.8	409
10	Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1692, 77-102.	4.1	380
11	Matrix Survival Signaling. Journal of Cell Biology, 2000, 149, 741-754.	5. 2	354
12	Conversion of Mechanical Force into TGF- \hat{l}^2 -Mediated Biochemical Signals. Current Biology, 2011, 21, 933-941.	3.9	316
13	Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. EMBO Journal, 1998, 17, 5933-5947.	7.8	298
14	Focal adhesion kinase: at the crossroads of signal transduction. Journal of Cell Science, 1997, 110, 401-407.	2.0	228
15	Human Embryonic Stem Cell Lines Generated without Embryo Destruction. Cell Stem Cell, 2008, 2, 113-117.	11.1	217
16	PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. Journal of Cell Biology, 2008, 180, 187-203.	5.2	196
17	Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature, 2017, 552, 239-243.	27.8	193
18	Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos. Nature Cell Biology, 2018, 20, 144-151.	10.3	182

#	Article	IF	CITATIONS
19	Mesodermal defect in late phase of gastrulation by a targeted mutation of focal adhesion kinase, FAK. Oncogene, 1995, 11, 1989-95.	5.9	160
20	Integrin signaling: it's where the action is. Current Opinion in Cell Biology, 2002, 14, 594-602.	5.4	157
21	Intrinsic FAK activity and Y925 phosphorylation facilitate an angiogenic switch in tumors. Oncogene, 2006, 25, 5969-5984.	5.9	143
22	Impaired integrin-mediated signal transduction, altered cytoskeletal structure and reduced motility in Hck/Fgr deficient macrophages. Journal of Cell Science, 1999, 112, 4067-4078.	2.0	138
23	Concise Review: Human Embryonic Stem Cells—What Have We Done? What Are We Doing? Where Are We Going?. Stem Cells, 2017, 35, 17-25.	3.2	137
24	MicroRNAs in spent blastocyst culture medium are derived fromÂtrophectoderm cells and canÂbeÂexplored for human embryoÂreproductive competence assessment. Fertility and Sterility, 2016, 105, 225-235.e3.	1.0	129
25	Focal Adhesion Kinase Is Required for Blood Vessel Morphogenesis. Circulation Research, 2003, 92, 300-307.	4.5	111
26	FAK promotes organization of fibronectin matrix and fibrillar adhesions. Journal of Cell Science, 2004, 117, 177-187.	2.0	106
27	v-Src SH3-enhanced Interaction with Focal Adhesion Kinase at \hat{I}^21 Integrin-containing Invadopodia Promotes Cell Invasion. Journal of Biological Chemistry, 2002, 277, 12487-12490.	3.4	102
28	3D InÂVitro Model of a Functional Epidermal Permeability Barrier from Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 675-689.	4.8	97
29	Stem cells in regenerative medicine: introduction. British Medical Bulletin, 2011, 98, 117-126.	6.9	91
30	Human embryonic and induced pluripotent stem cells in clinical trials: TableÂ1. British Medical Bulletin, 2015, 116, ldv045.	6.9	87
31	Plasma Membrane-Associated pY397FAK Is a Marker of Cytotrophoblast Invasion in Vivo and in Vitro. American Journal of Pathology, 2001, 159, 93-108.	3.8	86
32	Focal Adhesion Kinase and p130Cas Mediate Both Sarcomeric Organization and Activation of Genes Associated with Cardiac Myocyte Hypertrophy. Molecular Biology of the Cell, 2001, 12, 2290-2307.	2.1	85
33	Integrin $\hat{l}\pm4\hat{l}^21$ Promotes Focal Adhesion Kinase-Independent Cell Motility via $\hat{l}\pm4$ Cytoplasmic Domain-Specific Activation of c-Src. Molecular and Cellular Biology, 2005, 25, 9700-9712.	2.3	77
34	Derivation and feeder-free propagation of human embryonic stem cells under xeno-free conditions. Cytotherapy, 2012, 14, 122-128.	0.7	77
35	Impairment of Mobility in Endodermal Cells by FAK Deficiency. Experimental Cell Research, 1996, 222, 298-303.	2.6	73
36	FAK induces expression of Prx1 to promote tenascin-C–dependent fibroblast migration. Journal of Cell Biology, 2003, 161, 393-402.	5. 2	71

#	Article	IF	CITATIONS
37	Derivation and propagation of human embryonic stem cell lines from frozen embryos in an animal product–free environment. Nature Protocols, 2012, 7, 1366-1381.	12.0	70
38	Focal adhesion kinase mediates cell survival via NF-κB and ERK signaling pathways. American Journal of Physiology - Cell Physiology, 2007, 292, C1339-C1352.	4.6	69
39	c-Src Activation Plays a Role in Endothelin-dependent Hypertrophy of the Cardiac Myocyte. Journal of Biological Chemistry, 1998, 273, 35185-35193.	3.4	62
40	Focal adhesion kinase: at the crossroads of signal transduction. Journal of Cell Science, 1997, 110 (Pt) Tj ETQq0	0 0 rgBT /	Overlock 10
41	Derivation of Human Embryonic Stem Cell Lines From Biopsied Blastomeres on Human Feeders With Minimal Exposure to Xenomaterials. Stem Cells and Development, 2009, 18, 1343-1350.	2.1	59
42	Focal Adhesion Kinase Is Not Essential for in Vitro and in Vivo Differentiation of ES Cells. Biochemical and Biophysical Research Communications, 1995, 209, 300-309.	2.1	56
43	The Molecular Karyotype of 25 Clinical-Grade Human Embryonic Stem Cell Lines. Scientific Reports, 2015, 5, 17258.	3.3	54
44	FAK nuclear export signal sequences. FEBS Letters, 2008, 582, 2402-2406.	2.8	53
45	Hair cycle and wound healing in mice with a keratinocyte-restricted deletion of FAK. Oncogene, 2006, 25, 1081-1089.	5.9	52
46	Snail1 controls epithelial–mesenchymal lineage commitment in focal adhesion kinase–null embryonic cells. Journal of Cell Biology, 2011, 195, 729-738.	5.2	51
47	Phase I/II open-label trial of intravenous allogeneic mesenchymal stromal cell therapy in adults with recessive dystrophic epidermolysis bullosa. Journal of the American Academy of Dermatology, 2020, 83, 447-454.	1.2	50
48	Strategy for the creation of clinical grade hESC line banks that HLAâ€match a target population. EMBO Molecular Medicine, 2013, 5, 10-17.	6.9	48
49	Discordant Growth of Monozygotic Twins Starts at the Blastocyst Stage: A Case Study. Stem Cell Reports, 2015, 5, 946-953.	4.8	47
50	Prospects for the Use of Induced Pluripotent Stem Cells in Animal Conservation and Environmental Protection. Stem Cells Translational Medicine, 2019, 8, 7-13.	3.3	45
51	Human amniotic membrane grafts in therapy of chronic non-healing wounds: TableÂ1. British Medical Bulletin, 2016, 117, 59-67.	6.9	44
52	Reduced Expression of Focal Adhesion Kinase Disrupts Insulin Action in Skeletal Muscle Cells. Endocrinology, 2006, 147, 3333-3343.	2.8	43
53	Umbilical cord blood stem cells: clinical trials in non-hematological disorders. British Medical Bulletin, 2012, 102, 43-57.	6.9	42
54	A Thyroid Hormone Receptor/KLF9 Axis in Human Hepatocytes and Pluripotent Stem Cells. Stem Cells, 2015, 33, 416-428.	3.2	42

#	Article	IF	CITATIONS
55	Validation of Current Good Manufacturing Practice Compliant Human Pluripotent Stem Cell-Derived Hepatocytes for Cell-Based Therapy. Stem Cells Translational Medicine, 2019, 8, 124-137.	3.3	40
56	Human embryonic stem cells as a model for embryotoxicity screening. Regenerative Medicine, 2009, 4, 449-459.	1.7	37
57	sPLA2 and the epidermal barrier. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2014, 1841, 416-421.	2.4	36
58	GROÎ \pm regulates human embryonic stem cell self-renewal or adoption of a neuronal fate. Differentiation, 2011, 81, 222-232.	1.9	32
59	Derivation of hESC from Intact Blastocysts. Current Protocols in Stem Cell Biology, 2007, 1, Unit 1A.2.	3.0	30
60	Safety paradigm: genetic evaluation of therapeutic grade human embryonic stem cells. Journal of the Royal Society Interface, 2010, 7, S677-88.	3.4	30
61	Effect of Karyotype on Successful Human Embryonic Stem Cell Derivation. Stem Cells and Development, 2010, 19, 39-46.	2.1	29
62	Culture of human embryonic stem cells and the extracellular matrix microenvironment. Regenerative Medicine, 2006, 1, 95-101.	1.7	28
63	Lowered Humidity Produces Human Epidermal Equivalents with Enhanced Barrier Properties. Tissue Engineering - Part C: Methods, 2015, 21, 15-22.	2.1	26
64	Differential responses of p56lyn and p53lyn, products of alternatively spliced lyn mRNA, on stimulation of B-cell antigen receptor Molecular Biology of the Cell, 1991, 2, 979-987.	6.5	24
65	p59fyn-p125FAK cooperation in development of CD4+CD8+ thymocytes. Blood, 1996, 87, 865-870.	1.4	24
66	Focal Adhesion Kinase Controls pH-Dependent Epidermal Barrier Homeostasis by Regulating Actin-Directed Na+/H+ Exchanger 1 Plasma Membrane Localization. American Journal of Pathology, 2007, 170, 2055-2067.	3.8	24
67	Stem cell based therapy—where are we going?. Lancet, The, 2012, 379, 877-878.	13.7	23
68	Human Embryonic Stem Cells Derived from Embryos at Different Stages of Development Share Similar Transcription Profiles. PLoS ONE, 2011, 6, e26570.	2.5	22
69	Stem cell therapies for recessive dystrophic epidermolysis bullosa. British Journal of Dermatology, 2010, 163, 1149-1156.	1.5	21
70	Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: searching for biomarkers of implantation. Human Reproduction, 2019, 34, 1746-1761.	0.9	21
71	Cost-Effective Master Cell Bank Validation of Multiple Clinical-Grade Human Pluripotent Stem Cell Lines From a Single Donor. Stem Cells Translational Medicine, 2014, 3, 1116-1124.	3.3	20
72	Developmental clock compromises human twin model created by embryo splitting. Human Reproduction, 2015, 30, dev252.	0.9	20

#	Article	IF	CITATIONS
73	Effects of thyroid hormone on mitochondria and metabolism of human preimplantation embryos. Stem Cells, 2020, 38, 369-381.	3.2	20
74	Three Huntington's Disease Specific Mutation-Carrying Human Embryonic Stem Cell Lines Have Stable Number of CAG Repeats upon In Vitro Differentiation into Cardiomyocytes. PLoS ONE, 2015, 10, e0126860.	2.5	17
75	Sendai Virus-Based Reprogramming of Mesenchymal Stromal/Stem Cells from Umbilical Cord Wharton's Jelly into Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2014, 1357, 33-44.	0.9	16
76	Human Embryos Created by Embryo Splitting Secrete Significantly Lower Levels of miRNA-30c. Stem Cells and Development, 2016, 25, 1853-1862.	2.1	16
77	Isolation of Human Placental Fibroblasts. Current Protocols in Stem Cell Biology, 2008, 5, Unit 1C.6.	3.0	15
78	Biological and Clinical Significance of Clonogenic Assays in Patients with Myelodysplastic Syndromes. Medical Oncology, 2002, 19, 249-260.	2.5	14
79	Wharton's jelly mesenchymal stromal/stem cells derived under chemically defined animal product-free low oxygen conditions are rich in MSCA-1 ⁺ subpopulation. Regenerative Medicine, 2014, 9, 723-732.	1.7	14
80	Isolation and Expansion of Mesenchymal Stromal/Stem Cells from Umbilical Cord Under Chemically Defined Conditions. Methods in Molecular Biology, 2014, 1283, 65-71.	0.9	14
81	Skin abnormality in aged fyn-/- fak+/- mice. Carcinogenesis, 1997, 18, 1473-1476.	2.8	13
82	Perspective and Consensus Opinion: Good Practices for Using Organotypic Skin and Epidermal Equivalents in Experimental Dermatology Research. Journal of Investigative Dermatology, 2021, 141, 203-205.	0.7	13
83	Comparison of human isogeneic Wharton's jelly MSCs and iPSC-derived MSCs reveals differentiation-dependent metabolic responses to IFNG stimulation. Cell Death and Disease, 2019, 10, 277.	6.3	12
84	Integrin Stimulation Decreases Tyrosine Phosphorylation and Activity of Focal Adhesion Kinase in Thymocytes. Biochemical and Biophysical Research Communications, 1995, 215, 438-445.	2.1	11
85	Induced Pluripotent Stem Cell Differentiation and Three-Dimensional Tissue Formation Attenuate Clonal Epigenetic Differences in Trichohyalin. Stem Cells and Development, 2016, 25, 1366-1375.	2.1	10
86	Potential of human twin embryos generated by embryo splitting in assisted reproduction and research. Human Reproduction Update, 2016, 23, 156-165.	10.8	10
87	Analyzing FAK and Pyk2 in Early Integrin Signaling Events. Current Protocols in Cell Biology, 2006, 30, Unit 14.7.	2.3	9
88	iPSC in the past decade: the Japanese dominance. Regenerative Medicine, 2016, 11, 747-749.	1.7	8
89	Effects of maternal obesity on Wharton's Jelly mesenchymal stromal cells. Scientific Reports, 2017, 7, 17595.	3.3	8
90	p59fyn-p125FAK cooperation in development of CD4+CD8+ thymocytes. Blood, 1996, 87, 865-70.	1.4	8

#	Article	IF	CITATIONS
91	Pluripotent Stem Cells in Clinical Settingâ€"New Developments and Overview of Current Status. Stem Cells, 2022, 40, 791-801.	3.2	8
92	Logistics of stem cell isolation, preparation and delivery for heart repair: concerns of clinicians, manufacturers, investors and public health. Regenerative Medicine, 2008, 3, 83-91.	1.7	7
93	Walking at speeds close to the preferred transition speed as an approach to obesity treatment. Srpski Arhiv Za Celokupno Lekarstvo, 2012, 140, 58-64.	0.2	7
94	Human embryos from induced pluripotent stem cell-derived gametes: ethical and quality considerations. Regenerative Medicine, 2017, 12, 681-691.	1.7	6
95	Induced pluripotent stem cell (iPSC) line from an epidermolysis bullosa simplex patient heterozygous for keratin 5 E475G mutation and with the Dowling Meara phenotype. Stem Cell Research, 2019, 37, 101424.	0.7	6
96	Human pluripotent stem cells: An alternative for 3D in vitro modelling of skin disease. Experimental Dermatology, 2021, 30, 1572-1587.	2.9	6
97	Promises and challenges of the first clinical-grade induced pluripotent stem cell bank. Regenerative Medicine, 2013, 8, 101-102.	1.7	5
98	Induced pluripotent stem cell line from an atopic dermatitis patient heterozygous for c.2282del4 mutation in filaggrin: KCLi001-A. Stem Cell Research, 2018, 31, 122-126.	0.7	5
99	Induced pluripotent stem cell line heterozygous for p.R501X mutation in filaggrin: KCLi003-A. Stem Cell Research, 2019, 39, 101527.	0.7	5
100	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2010, 5, 607-615.	1.7	4
101	Industry highlights: Stem cell and regenerative medicine. Regenerative Medicine, 2011, 6, 55-60.	1.7	4
102	Generation of KCL034 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 184-188.	0.7	4
103	Epidermal Basement Membrane Substitutes for Bioengineering of Human Epidermal Equivalents. JID Innovations, 2022, 2, 100083.	2.4	4
104	Establishment of Cell Lines from Mouse Embryos with Early Embryonic Lethality. Cell Communication and Adhesion, 2008, 15, 379-383.	1.0	3
105	Generation of KCL035 research grade human embryonic stem cell line carrying a mutation in HBB gene. Stem Cell Research, 2016, 16, 210-212.	0.7	3
106	Generation of KCL038 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 137-139.	0.7	3
107	Generation of KCL040 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 173-176.	0.7	3
108	What can stem cell technology offer to <scp>IVF</scp> patients?. BJOG: an International Journal of Obstetrics and Gynaecology, 2019, 126, 824-827.	2.3	3

#	Article	IF	CITATIONS
109	Induced pluripotent stem cell line heterozygous for p.R2447X mutation in filaggrin: KCLi002-A. Stem Cell Research, 2019, 38, 101462.	0.7	3
110	Stem Cell Research Lab Resource: Stem Cell LineInduced pluripotent stem cell (iPSC) line MLi-003A derived from an individual with the maximum number of filaggrin (FLG) tandem repeats. Stem Cell Research, 2020, 45, 101827.	0.7	3
111	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2010, 5, 323-330.	1.7	2
112	Generation of KCL018 research grade human embryonic stem cell line carrying a mutation in the DMPK gene. Stem Cell Research, 2016, 16, 342-344.	0.7	2
113	Generation of KCL037 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 149-151.	0.7	2
114	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 August–30 September 2015. Regenerative Medicine, 2016, 11, 11-17.	1.7	2
115	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions, 1 January–28 February 2017. Regenerative Medicine, 2017, 12, 321-330.	1.7	2
116	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 January –28 February 28 2018. Regenerative Medicine, 2018, 13, 361-370.	1.7	2
117	Markers for Ca ++ â€induced terminal differentiation of keratinocytes in vitro under defined conditions. Experimental Dermatology, 2020, 29, 1238-1242.	2.9	2
118	Industry updates from the field of stem cell research and regenerative medicine in January 2020: Industry News. Regenerative Medicine, 2020, 15, 1595-1601.	1.7	2
119	Industry updates from the field of stem cell research and regenerative medicine in November 2020. Regenerative Medicine, 2021, 16, 323-329.	1.7	2
120	Industry updates from the field of stem cell research and regenerative medicine in January 2021. Regenerative Medicine, 2021, 16, 423-429.	1.7	2
121	Industry updates from the field of stem cell research and regenerative medicine in February 2022. Regenerative Medicine, 2022, , .	1.7	2
122	Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2008, 3, 257-267.	1.7	1
123	Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2009, 4, 11-25.	1.7	1
124	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2010, 5, 695-700.	1.7	1
125	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2012, 7, 141-145.	1.7	1
126	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2012, 7, 269-273.	1.7	1

#	Article	IF	CITATIONS
127	Generation of KCL033 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 296-299.	0.7	1
128	Generation of KCL025 research grade human embryonic stem cell line carrying a mutation in NF1 gene. Stem Cell Research, 2016, 16, 256-258.	0.7	1
129	Generation of KCL039 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 170-172.	0.7	1
130	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April 2016– 31 May 2016. Regenerative Medicine, 2016, 11, 499-505.	1.7	1
131	Generation of KCL031 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 195-198.	0.7	1
132	Generation of KCL032 clinical grade human embryonic stem cell line. Stem Cell Research, 2016, 16, 17-19.	0.7	1
133	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April–31 May 2017. Regenerative Medicine, 2017, 12, 721-731.	1.7	1
134	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutionsÂ1 July–31 August 2017. Regenerative Medicine, 2017, 12, 905-916.	1.7	1
135	Industry updates from the field of stem cell research and regenerative medicine in June 2020. Regenerative Medicine, 2020, 15, 2145-2152.	1.7	1
136	Industry updates from the field of stem cell research and regenerative medicine in July 2020. Regenerative Medicine, 2020, 15, 2253-2260.	1.7	1
137	Industry updates from the field of stem cell research and regenerative medicine in August 2020. Regenerative Medicine, 2020, 15, 2329-2334.	1.7	1
138	mRNA-Based Reprogramming Under Xeno-Free and Feeder-Free Conditions. Methods in Molecular Biology, 2020, , 1.	0.9	1
139	Industry updates from the field of stem cell research and regenerative medicine in October 2019. Regenerative Medicine, 2020, 15, 1251-1259.	1.7	1
140	Industry updates from the field of stem cell research and regenerative medicine in March 2020. Regenerative Medicine, 2020, 15, 1833-1840.	1.7	1
141	Industry updates from the field of stem cell research and regenerative medicine in December 2019. Regenerative Medicine, 2020, 15, 1499-1507.	1.7	1
142	Industry updates from the field of stem cell research and regenerative medicine in September 2020. Regenerative Medicine, 2021, 16, 1-8.	1.7	1
143	Industry updates from the field of stem cell research and regenerative medicine in December 2020. Regenerative Medicine, 2021, 16, 331-341.	1.7	1
144	Industry updates from the field of stem cell research and regenerative medicine in February 2021. Regenerative Medicine, 2021, 16, 517-523.	1.7	1

#	Article	IF	Citations
145	Industry updates from the field of stem cell research and regenerative medicine in October 2021. Regenerative Medicine, 2022, 17, 55-62.	1.7	1
146	Industry updates from the field of stem cell research and regenerative medicine in January 2022. Regenerative Medicine, 2022, , .	1.7	1
147	Conference Scene: Venture capital and emerging regenerative medicine companies. Regenerative Medicine, 2009, 4, 375-376.	1.7	0
148	Industry Report. Regenerative Medicine, 2009, 4, 797-804.	1.7	0
149	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2010, 5, 165-173.	1.7	0
150	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, $2010, 5, 11-20$.	1.7	0
151	Conference Scene: Challenges to commercialization. Regenerative Medicine, 2010, 5, 341-343.	1.7	0
152	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2011, 6, 145-156.	1.7	0
153	Industry Update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2011, 6, 543-549.	1.7	0
154	Global update: England and Wales. Regenerative Medicine, 2011, 6, 144-147.	1.7	0
155	Industry update: Latest developments in stem cell research and regenerative medicine. Regenerative Medicine, 2013, 8, 689-694.	1.7	0
156	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions $1\hat{a} \in 30$ June 2015. Regenerative Medicine, 2015, 10, 805-810.	1.7	0
157	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1–31 July 2015. Regenerative Medicine, 2015, 10, 931-934.	1.7	0
158	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April–31 May 2015. Regenerative Medicine, 2015, 10, 687-693.	1.7	0
159	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions 1 January–29 February 2016. Regenerative Medicine, 2016, 11, 363-371.	1.7	0
160	Self-Organization of the Human Embryo in the Absence of Maternal Tissues. Obstetrical and Gynecological Survey, 2016, 71, 718-719.	0.4	0
161	Generation of KCL026 research grade human embryonic stem cell line carrying a mutation in SMN1 gene. Stem Cell Research, 2016, 16, 249-251.	0.7	0
162	Generation of KCL013 research grade human embryonic stem cell line carrying a mutation in the HTT gene. Stem Cell Research, 2016, 16, 293-295.	0.7	0

#	Article	IF	CITATIONS
163	Generation of KCL021 research grade human embryonic stem cell line carrying a Î"F508 mutation in the CFTR gene. Stem Cell Research, 2016, 16, 177-179.	0.7	0
164	Generation of KCL028 research grade human embryonic stem cell line carrying a mutation in the HTT gene. Stem Cell Research, 2016, 16, 278-281.	0.7	0
165	Generation of KCL024 research grade human embryonic stem cell line carrying a mutation in NF1 gene. Stem Cell Research, 2016, 16, 243-245.	0.7	O
166	Generation of KCL036 research grade human embryonic stem cell line carrying a mutation in the HTT gene. Stem Cell Research, 2016, 16, 345-348.	0.7	0
167	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1–31 March 2016. Regenerative Medicine, 2016, 11, 431-435.	1.7	0
168	Generation of KCL017 research grade human embryonic stem cell line carrying a mutation in VHL gene. Stem Cell Research, 2016, 16, 268-270.	0.7	0
169	Generation of KCL029 research grade human embryonic stem cell line carrying a mutation in WAS gene. Stem Cell Research, 2016, 16, 189-191.	0.7	0
170	Generation of KCL027 research grade human embryonic stem cell line carrying a mutation in the HTT gene. Stem Cell Research, 2016, 16, 274-277.	0.7	0
171	Generation of KCL012 research grade human embryonic stem cell line carrying a mutation in the HTT gene. Stem Cell Research, 2016, 16, 264-267.	0.7	0
172	Generation of KCL016 research grade human embryonic stem cell line carrying a mutation in VHL gene. Stem Cell Research, 2016, 16, 37-39.	0.7	0
173	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1–31 December 2015. Regenerative Medicine, 2016, 11, 235-240.	1.7	0
174	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1–30 June, 2017. Regenerative Medicine, 2017, 12, 887-892.	1.7	0
175	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 September $\$\in$ 30 $\$$ September $\$\in$ 2017. Regenerative Medicine, 2018, 13, 13-18.	1.7	0
176	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutionsÂ1 November – 31 December 2017. Regenerative Medicine, 2018, 13, 269-276.	1.7	O
177	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions 1 July–31 August 2018. Regenerative Medicine, 2018, 13, 875-880.	1.7	O
178	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1 April–31 May 2018. Regenerative Medicine, 2018, 13, 633-641.	1.7	0
179	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from non-academic institutions June 1–June 30, 2018. Regenerative Medicine, 2018, 13, 867-874.	1.7	0
180	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions 1–31 March 2018. Regenerative Medicine, 2018, 13, 497-501.	1.7	0

#	Article	IF	Citations
181	Industry updates from the field of stem cell research and regenerative medicine in August 2019. Regenerative Medicine, 2019, 14, 1071-1075.	1.7	O
182	Industry updates from the field of stem cell research and regenerative medicine in July 2019. Regenerative Medicine, 2019, 14, 991-996.	1.7	0
183	Industry updates from the field of stem cell research and regenerative medicine in June 2019. Regenerative Medicine, 2019, 14, 905-913.	1.7	0
184	Industry updates from the field of stem cell research and regenerative medicine in May 2019. Regenerative Medicine, 2019, 14, 815-822.	1.7	0
185	Industry updates from the field of stem cell research and regenerative medicine in April 2019. Regenerative Medicine, 2019, 14, 721-733.	1.7	0
186	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in November 2018. Regenerative Medicine, 2019, 14, 139-144.	1.7	0
187	Industry updates from the field of stem cell research and regenerative medicine in January 2019. Regenerative Medicine, 2019, 14, 345-351.	1.7	0
188	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions September 1–30, 2018. Regenerative Medicine, 2019, 14, 7-13.	1.7	0
189	Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative Medicine, 2019, 14, 85-92.	1.7	0
190	Industry updates from the field of stem cell research and regenerative medicine in September 2019. Regenerative Medicine, 2020, 15, 1161-1170.	1.7	0
191	Industry updates from the field of stem cell research and regenerative medicine in February 2020. Regenerative Medicine, 2020, 15, 1689-1694.	1.7	0
192	Industry updates from the field of stem cell research and regenerative medicine in November 2019. Regenerative Medicine, 2020, 15, 1371-1379.	1.7	0
193	Industry updates from the field of stem cell research and regenerative medicine in October 2020. Regenerative Medicine, 2021, 16, 101-111.	1.7	0
194	Industry updates from the field of stem cell research and regenerative medicine in March 2021. Regenerative Medicine, 2021, 16, 607-613.	1.7	0
195	Industry updates from the field of stem cell research and regenerative medicine in June 2021. Regenerative Medicine, 2021, 16, 893-903.	1.7	0
196	Induced pluripotent stem cell (iPSC) line MLi-004A derived from a patient with recessive dystrophic epidermolysis bullosa (RDEB). Stem Cell Research, 2021, 55, 102463.	0.7	0
197	Industry updates from the field of stem cell research and regenerative medicine in April 2021. Regenerative Medicine, 2021, 16, 703-707.	1.7	0
198	Industry updates from the field of stem cell research and regenerative medicine in May 2021. Regenerative Medicine, 2021, 16, 814-821.	1.7	0

#	Article	IF	CITATIONS
199	Industry updates from the field of stem cell research and regenerative medicine in July 2021. Regenerative Medicine, 2021, 16, 963-969.	1.7	0
200	Industry updates from the field of stem cell research and regenerative medicine in August 2021. Regenerative Medicine, 2021, 16, 1021-1028.	1.7	0
201	Industry updates from the field of stem cell research and regenerative medicine in September 2021. Regenerative Medicine, 2021, , .	1.7	0
202	Industry updates from the field of stem cell research and regenerative medicine in May 2020. Regenerative Medicine, 2020, 15, 2045-2051.	1.7	0
203	Industry updates from the field of stem cell research and regenerative medicine in November 2021. Regenerative Medicine, 2022, 17, 107-117.	1.7	0
204	Industry updates from the field of stem cell research and regenerative medicine in December 2021. Regenerative Medicine, 2022, 17, 185-191.	1.7	0
205	Industry updates from the field of stem cell research and regenerative medicine in April 2020. Regenerative Medicine, 2020, 15, 1943-1950.	1.7	0
206	Industry updates from the field of stem cell research and regenerative medicine in March 2022. Regenerative Medicine, 2022, , .	1.7	0
207	Industry updates from the field of stem cell research and regenerative medicine in April 2022. Regenerative Medicine, 2022, 17, 507-515.	1.7	0
208	Industry updates from the field of stem cell research and regenerative medicine in May 2022. Regenerative Medicine, 0, , .	1.7	0