
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968802/publications.pdf Version: 2024-02-01

SHENCLI

#	Article	IF	CITATIONS
1	Tailored amorphous titanium oxide and carbon composites for enhanced pseudocapacitive sodium storage. Journal of Energy Chemistry, 2022, 65, 127-132.	12.9	7
2	Rational design of Ni3(HITP)2@GO composite for lithium-sulfur cathode. Applied Surface Science, 2022, 572, 151479.	6.1	7
3	Optimizing the microstructure of carbon nano-honeycombs for high-energy sodium-ion capacitor. Electrochimica Acta, 2022, 403, 139675.	5.2	11
4	Fast Intercalation in Locally Ordered Carbon Nanocrystallites for Superior Potassium Ions Storage. Advanced Functional Materials, 2022, 32, 2109672.	14.9	18
5	Hydrophilic silica spheres layer as ions shunt for enhanced Zn metal anode. Chemical Engineering Journal, 2022, 431, 133931.	12.7	33
6	Boosting selective H ₂ sensing of ZnO derived from ZIF-8 by rGO functionalization. Inorganic Chemistry Frontiers, 2022, 9, 599-606.	6.0	10
7	Fabrication of Two-Dimensional Metal–Organic Framework Nanosheets through Crystal Dissolution–Growth Kinetics. ACS Applied Materials & Interfaces, 2022, 14, 7192-7199.	8.0	13
8	Hierarchical porous N, S co-doped carbon derived from fish scales for enhanced membrane capacitive deionization. Electrochimica Acta, 2022, 409, 139983.	5.2	12
9	Interfacial engineering for metal oxide/nitride nano-heterojunctions towards high-rate lithium-ion storage. Journal of Materials Chemistry A, 2022, 10, 7391-7398.	10.3	18
10	Frontiers and Structural Engineering for Building Flexible Zinc–Air Batteries. Advanced Science, 2022, 9, e2103954.	11.2	20
11	A leather-based electrolyte for all-in-one configured flexible supercapacitors. Chemical Communications, 2022, 58, 7070-7073.	4.1	1
12	Modifiers versus Channels: Creating Shape elective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angewandte Chemie - International Edition, 2021, 60, 976-982.	13.8	30
13	Modifiers versus Channels: Creating Shape elective Catalysis of Metal Nanoparticles/Porous Nanomaterials. Angewandte Chemie, 2021, 133, 989-995.	2.0	3
14	Operando mechanistic and dynamic studies of N/P co-doped hard carbon nanofibers for efficient sodium storage. Chemical Communications, 2021, 57, 9610-9613.	4.1	24
15	Oxygen vacancies boosted the electrochemical kinetics of Nb ₂ O _{5â^'<i>x</i>} for superior lithium storage. Chemical Communications, 2021, 57, 8182-8185.	4.1	14
16	The Role of Defects in Metal–Organic Frameworks for Nitrogen Reduction Reaction: When Defects Switch to Features. Advanced Functional Materials, 2021, 31, 2010052.	14.9	92
17	SnS Nanoparticles Grown on Sn-Atom-Modified N,S-Codoped Mesoporous Carbon Nanosheets as Electrocatalysts for CO ₂ Reduction to Formate. ACS Applied Nano Materials, 2021, 4, 2257-2264.	5.0	11
18	Rational Design of the CoS/Co ₉ S ₈ @NC Composite Enabling High-Rate Sodium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 5574-5582.	5.1	27

#	Article	IF	CITATIONS
19	Regulating Electronic Status of Platinum Nanoparticles by Metal–Organic Frameworks for Selective Catalysis. CCS Chemistry, 2021, 3, 1607-1614.	7.8	21
20	The Encounter of Biomolecules in Metal–Organic Framework Micro/Nano Reactors. ACS Applied Materials & Interfaces, 2021, 13, 52215-52233.	8.0	12
21	Fe2TiO5 nanochains as anode for high-performance lithium-ion capacitor. Rare Metals, 2021, 40, 2424-2431.	7.1	41
22	Simultaneous Efficient Decontamination of Bacteria and Heavy Metals via Capacitive Deionization Using Polydopamine/Polyhexamethylene Guanidine Co-deposited Activated Carbon Electrodes. ACS Applied Materials & Interfaces, 2021, 13, 61669-61680.	8.0	16
23	Three-Dimensional Multilayered Interconnected Network of Conjugated Carbon Nanofibers Encapsulated Silicon/Graphene Oxide for Lithium Storage. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 801-807.	3.7	5
24	Polar, catalytic, and conductive CoSe2/C frameworks for performance enhanced S cathode in Li–S batteries. Journal of Energy Chemistry, 2020, 48, 128-135.	12.9	61
25	SnSe ₂ Nanoparticles Chemically Embedded in a Carbon Shell for High-Rate Sodium-Ion Storage. ACS Applied Materials & Interfaces, 2020, 12, 2346-2353.	8.0	77
26	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€Ion Batteries. Angewandte Chemie, 2020, 132, 4793-4799.	2.0	7
27	Metal–Organic Frameworks as Metal Ion Precursors for the Synthesis of Nanocomposites for Lithiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2020, 59, 4763-4769.	13.8	52
28	CNT@leather-based electronic bidirectional pressure sensor. Science China Technological Sciences, 2020, 63, 2137-2146.	4.0	8
29	Rational Design of Coâ€NiSe ₂ @Nâ€Doped Carbon Hollow Structure for Enhanced Li–S Battery Performance. Energy Technology, 2020, 8, 2000302.	3.8	14
30	One-step turning leather wastes into heteroatom doped carbon aerogel for performance enhanced capacitive deionization. Microporous and Mesoporous Materials, 2020, 303, 110303.	4.4	45
31	Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc–air batteries. Journal of Materials Chemistry A, 2020, 8, 7184-7191.	10.3	28
32	Co ₃ O ₄ nanoparticles embedded in nitrogen-doped graphitic carbon fibers as a free-standing electrode for promotion of lithium ion storage with capacitive contribution. Chemical Communications, 2020, 56, 5767-5770.	4.1	16
33	Thermal Shrinkage Behavior of Metal–Organic Frameworks. Advanced Functional Materials, 2020, 30, 2001389.	14.9	35
34	Hydrophilic nano-porous carbon derived from egg whites for highly efficient capacitive deionization. Applied Surface Science, 2020, 512, 145740.	6.1	31
35	Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co ₃ O ₄ Nanocomposites for the Colorimetric Detection of H ₂ O ₂ and Glucose. Inorganic Chemistry, 2020, 59, 3152-3159.	4.0	92
36	Transitional MOFs: Exposing Metal Sites with Porosity for Enhancing Catalytic Reaction Performance. ACS Applied Materials & Interfaces, 2020, 12, 23968-23975.	8.0	20

#	Article	IF	CITATIONS
37	An <i>in situ</i> decorated cathode with LiF and F@C for performance enhanced Li–S batteries. Chemical Communications, 2020, 56, 6444-6447.	4.1	5
38	Recent progress of structural designs of silicon for performance-enhanced lithium-ion batteries. Chemical Engineering Journal, 2020, 397, 125380.	12.7	89
39	3D-conductive pathway written on leather for highly sensitive and durable electronic whisker. Journal of Materials Chemistry C, 2020, 8, 9748-9754.	5.5	15
40	Hybrid fluorophores-based fluorogenic paper device for visually high-throughput detection of Cu2+ in real samples. Dyes and Pigments, 2019, 170, 107639.	3.7	11
41	Multiple Active Sites of Carbon for Highâ€Rate Surfaceâ€Capacitive Sodiumâ€Ion Storage. Angewandte Chemie - International Edition, 2019, 58, 13584-13589.	13.8	98
42	Multiple Active Sites of Carbon for Highâ€Rate Surface apacitive Sodiumâ€Ion Storage. Angewandte Chemie, 2019, 131, 13718-13723.	2.0	28
43	Advances in Sn-Based Catalysts for Electrochemical CO2 Reduction. Nano-Micro Letters, 2019, 11, 62.	27.0	176
44	Leatherâ€Based Strain Sensor with Hierarchical Structure for Motion Monitoring. Advanced Materials Technologies, 2019, 4, 1900442.	5.8	37
45	Regenerating leather waste for flexible pressure sensing applications. Journal of Leather Science and Engineering, 2019, 1, .	6.0	14
46	Regulation of Cobalt–Nickel LDHs' Structure and Components for Optimizing the Performance of an Electrochemical Sensor. ACS Applied Nano Materials, 2019, 2, 6387-6396.	5.0	33
47	Dual-component LixTiO2@silica functional coating in one layer for performance enhanced LiNi0.6Co0.2Mn0.2O2 cathode. Nano Energy, 2019, 58, 673-679.	16.0	84
48	Rational design of multi-functional CoS@rGO composite for performance enhanced Li-S cathode. Journal of Power Sources, 2019, 421, 132-138.	7.8	54
49	Wearable Leather-Based Electronics for Respiration Monitoring. ACS Applied Bio Materials, 2019, 2, 1427-1431.	4.6	39
50	Conductive MOF-Modified Separator for Mitigating the Shuttle Effect of Lithium–Sulfur Battery through a Filtration Method. ACS Applied Materials & Interfaces, 2019, 11, 11459-11465.	8.0	141
51	Rambutanâ€Inspired Yolkâ€5hell Silica@Carbon Frameworks from Biomass for Longâ€Life Anode Materials. ChemistrySelect, 2019, 4, 14075-14081.	1.5	5
52	Designing Li-protective layer via SOCl2 additive for stabilizing lithium-sulfur battery. Energy Storage Materials, 2019, 18, 222-228.	18.0	84
53	Bi ₂ S ₃ Nanorods Bonding on Reduced Graphene Oxide Surface as Advanced Anode Materials for Sodiumâ€ion Batteries. Energy Technology, 2019, 7, 1800876.	3.8	15
54	Repurposed Leather with Sensing Capabilities for Multifunctional Electronic Skin. Advanced Science, 2019, 6, 1801283.	11.2	119

#	Article	IF	CITATIONS
55	Multicomponent metal–organic framework derivatives for optimizing the selective catalytic performance of styrene epoxidation reaction. Nanoscale, 2018, 10, 8772-8778.	5.6	40
56	α-Fe 2 O 3 nanoplates with superior electrochemical performance for lithium-ion batteries. Green Energy and Environment, 2018, 3, 156-162.	8.7	34
57	Hollow Ni–CoSe ₂ Embedded in Nitrogen-Doped Carbon Nanocomposites Derived from Metal–Organic Frameworks for High-Rate Anodes. ACS Applied Materials & Interfaces, 2018, 10, 38845-38852.	8.0	51
58	Compartmentalization within Selfâ€Assembled Metal–Organic Framework Nanoparticles for Tandem Reactions. Advanced Functional Materials, 2018, 28, 1802479.	14.9	55
59	Designing MOFs-Derived FeS ₂ @Carbon Composites for High-Rate Sodium Ion Storage with Capacitive Contributions. ACS Applied Materials & Interfaces, 2018, 10, 33097-33104.	8.0	126
60	Metal–organic framework derived leaf-like CoSNC nanocomposites for supercapacitor electrodes. Nanoscale, 2018, 10, 17958-17964.	5.6	23
61	Dual modification of TiO 2 nanorods for selective photoelectrochemical detection of organic compounds. Sensors and Actuators B: Chemical, 2017, 250, 307-314.	7.8	24
62	Bismuth nano-spheres encapsulated in porous carbon network for robust and fast sodium storage. Chemical Engineering Journal, 2017, 320, 300-307.	12.7	72
63	Fabrication of Flexible Transparent Electrode with Enhanced Conductivity from Hierarchical Metal Grids. ACS Applied Materials & Interfaces, 2017, 9, 39110-39115.	8.0	52
64	Dual-functional gum arabic binder for silicon anodes in lithium ion batteries. Nano Energy, 2015, 12, 178-185.	16.0	236
65	Low cost and environmentally benign crack-blocking structures for long life and high power Si electrodes in lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 2036-2042.	10.3	53
66	Surface capacitive contributions: Towards high rate anode materials for sodium ion batteries. Nano Energy, 2015, 12, 224-230.	16.0	371
67	Multifunctional SA-PProDOT Binder for Lithium Ion Batteries. Nano Letters, 2015, 15, 4440-4447.	9.1	97
68	Anchoring ultra-fine TiO ₂ –SnO ₂ solid solution particles onto graphene by one-pot ball-milling for long-life lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 9700-9706.	10.3	47
69	Pseudocapacitance of amorphous TiO2@nitrogen doped graphene composite for high rate lithium storage. Electrochimica Acta, 2015, 180, 112-119.	5.2	60
70	Microporous bamboo biochar for lithium-sulfur batteries. Nano Research, 2015, 8, 129-139.	10.4	284
71	Enhanced photoelectroctatlytic performance of etched 3C–SiC thin film for water splitting under visible light. RSC Advances, 2014, 4, 54441-54446.	3.6	10
72	High-performance amorphous carbon–graphene nanocomposite anode for lithium-ion batteries. RSC Advances, 2014, 4, 18899.	3.6	16

#	Article	IF	CITATIONS
73	Blue hydrogenated lithium titanate as a high-rate anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 6353.	10.3	58
74	SnO ₂ decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries. RSC Advances, 2014, 4, 50148-50152.	3.6	43
75	Resilient mesoporous TiO2/graphene nanocomposite for high rate performance lithium-ion batteries. Chemical Engineering Journal, 2014, 256, 247-254.	12.7	107
76	Directional synthesis of tin oxide@graphene nanocomposites via a one-step up-scalable wet-mechanochemical route for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 10211-10217.	10.3	54
77	Hydrogenation Synthesis of Blue TiO ₂ for High-Performance Lithium-Ion Batteries. Journal of Physical Chemistry C, 2014, 118, 8824-8830.	3.1	167
78	Photoelectrochemical Characterization of Hydrogenated TiO ₂ Nanotubes as Photoanodes for Sensing Applications. ACS Applied Materials & Interfaces, 2013, 5, 11129-11135.	8.0	108
79	An environmentally benign LIB fabrication process using a low cost, water soluble and efficient binder. Journal of Materials Chemistry A, 2013, 1, 11543.	10.3	42
80	Photocatalytic Synthesis of TiO ₂ and Reduced Graphene Oxide Nanocomposite for Lithium Ion Battery. ACS Applied Materials & Interfaces, 2012, 4, 3636-3642.	8.0	276
81	Layer Structured Sulfur/Expanded Graphite Composite as Cathode for Lithium Battery. Electrochemical and Solid-State Letters, 2011, 14, A105-A107.	2.2	45
82	Synthesis and photocatalytic properties of the graphene–La2Ti2O7 nanocomposites. Chemical Engineering Journal, 2011, 178, 468-474.	12.7	55