Xuan-Yu Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7968338/publications.pdf

Version: 2024-02-01

759233 713466 22 477 12 21 h-index citations g-index papers 22 22 22 870 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Molecular Mechanism of Human Voltage-Dependent Anion Channel 1 Blockade by the Metallofullerenol Gd@C82(OH)22: An In Silico Study. Biomolecules, 2022, 12, 123.	4.0	1
2	Molecular Dynamics Simulation Study on Interactions of Cycloviolacin with Different Phospholipids. Journal of Physical Chemistry B, 2021, 125, 3476-3485.	2.6	8
3	Multifaceted Regulation of Potassium-Ion Channels by Graphene Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2021, 13, 27784-27795.	8.0	4
4	Zipper-Like Unfolding of dsDNA Caused by Graphene Wrinkles. Journal of Physical Chemistry C, 2020, 124, 3332-3340.	3.1	11
5	Binding patterns and dynamics of double-stranded DNA on the phosphorene surface. Nanoscale, 2020, 12, 9430-9439.	5 . 6	17
6	Potential blockade of the human voltage-dependent anion channel by MoS2 nanoflakes. Physical Chemistry Chemical Physics, 2019, 21, 9520-9530.	2.8	2
7	Inhibition of CYP2C8 by metallofullerenol Gd@C82(OH)22 through blocking substrate channels and substrate recognition sites. Carbon, 2018, 127, 667-675.	10.3	9
8	Exploring the Nanotoxicology of MoS ₂ : A Study on the Interaction of MoS ₂ Nanoflakes and K ⁺ Channels. ACS Nano, 2018, 12, 705-717.	14.6	44
9	Molecular mechanism of phosphoinositides' specificity for the inwardly rectifying potassium channel Kir2.2. Chemical Science, 2018, 9, 8352-8362.	7.4	2
10	The Heptahelical Domain of the Sweet Taste Receptor T1R2 Is a New Allosteric Binding Site for the Sweet Taste Modulator Amiloride That Modulates Sweet Taste in a Species-Dependent Manner. Journal of Molecular Neuroscience, 2018, 66, 207-213.	2.3	11
11	Particle Size-Dependent Antibacterial Activity and Murine Cell Cytotoxicity Induced by Graphene Oxide Nanomaterials. Journal of Nanomaterials, 2016, 2016, 1-9.	2.7	12
12	EGCG in Green Tea Induces Aggregation of HMGB1 Protein through Large Conformational Changes with Polarized Charge Redistribution. Scientific Reports, 2016, 6, 22128.	3.3	19
13	The Molecular Mechanism of Opening the Helix Bundle Crossing (HBC) Gate of a Kir Channel. Scientific Reports, 2016, 6, 29399.	3.3	26
14	Unifying Mechanism of Controlling Kir3 Channel Activity by G Proteins and Phosphoinositides. International Review of Neurobiology, 2015, 123, 1-26.	2.0	20
15	A Critical Gating Switch at a Modulatory Site in Neuronal Kir3 Channels. Journal of Neuroscience, 2015, 35, 14397-14405.	3. 6	22
16	Molecular overlap in the regulation of SK channels by small molecules and phosphoinositides. Science Advances, 2015, 1, e1500008.	10.3	11
17	Phosphoinositide Control of Membrane Protein Function: A Frontier Led by Studies on Ion Channels. Annual Review of Physiology, 2015, 77, 81-104.	13.1	84
18	Selective phosphorylation modulates the PIP2 sensitivity of the CaM–SK channel complex. Nature Chemical Biology, 2014, 10, 753-759.	8.0	59

#	Article	IF	CITATIONS
19	Structural Determinants of Phosphatidylinositol 4,5-Bisphosphate (PIP2) Regulation of BK Channel Activity through the RCK1 Ca2+ Coordination Site. Journal of Biological Chemistry, 2014, 289, 18860-18872.	3.4	37
20	Computational Approaches for Modeling GPCR Dimerization. Current Pharmaceutical Biotechnology, 2014, 15, 996-1006.	1.6	18
21	Predicting Protein Interactions by Brownian Dynamics Simulations. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-11.	3.0	7
22	The Molecular Mechanism by which PIP2 Opens the Intracellular G-Loop Gate of a Kir3.1 Channel. Biophysical Journal, 2012, 102, 2049-2059.	0.5	53