Emily R Derbyshire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/796768/publications.pdf

Version: 2024-02-01

54 papers 2,539 citations

257450 24 h-index 197818 49 g-index

65 all docs

65 docs citations

65 times ranked

3589 citing authors

#	Article	IF	Citations
1	Plasmodium's fight for survival: escaping elimination while acquiring nutrients. Trends in Parasitology, 2022, 38, 544-557.	3.3	5
2	A single amino acid residue controls acyltransferase activity in a polyketide synthase from Toxoplasma gondii. IScience, 2022, 25, 104443.	4.1	7
3	Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nature Communications, 2021, 12, 1704.	12.8	45
4	Chemoproteomics for <i>Plasmodium</i> Parasite Drug Target Discovery. ChemBioChem, 2021, 22, 2591-2599.	2.6	8
5	Characterization of the Tubovesicular Network in Plasmodium vivax Liver Stage Hypnozoites and Schizonts. Frontiers in Cellular and Infection Microbiology, 2021, 11, 687019.	3.9	8
6	Coculturing of Mosquitoâ€Microbiome Bacteria Promotes Heme Degradation in Elizabethkingia anophelis. ChemBioChem, 2020, 21, 1279-1284.	2.6	14
7	Investigating the Role of Class I Adenylate-Forming Enzymes in Natural Product Biosynthesis. ACS Chemical Biology, 2020, 15, 17-27.	3.4	18
8	<i>Plasmodium</i> chaperonin TRiC/CCT identified as a target of the antihistamine clemastine using parallel chemoproteomic strategy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 5810-5817.	7.1	37
9	A Systematic Analysis of Mosquito-Microbiome Biosynthetic Gene Clusters Reveals Antimalarial Siderophores that Reduce Mosquito Reproduction Capacity. Cell Chemical Biology, 2020, 27, 817-826.e5.	5.2	17
10	Tafenoquine: A Step toward Malaria Elimination. Biochemistry, 2020, 59, 911-920.	2.5	27
11	It's about Time: Insights into the Modes of Action of Antimalarials. Cell Chemical Biology, 2020, 27, 139-141.	5.2	O
12	Linking Genes to Molecules in Eukaryotic Sources: An Endeavor to Expand Our Biosynthetic Repertoire. Molecules, 2020, 25, 625.	3.8	6
13	RNA-Seq Analysis Illuminates the Early Stages of <i>Plasmodium</i> Liver Infection. MBio, 2020, 11, .	4.1	30
14	Plasmodium vivax Liver and Blood Stages Recruit the Druggable Host Membrane Channel Aquaporin-3. Cell Chemical Biology, 2020, 27, 719-727.e5.	5.2	34
15	Phosphatidylinositol 3-phosphate and Hsp70 protect Plasmodium falciparum from heat-induced cell death. ELife, 2020, 9, .	6.0	20
16	Discovery of Druggable Host Factors Critical to Plasmodium Liver-Stage Infection. Cell Chemical Biology, 2019, 26, 1253-1262.e5.	5.2	29
17	Close the ring to break the cycle: tandem quinolone-alkyne-cyclisation gives access to tricyclic pyrrolo[1,2- <i>a</i>)quinolin-5-ones with potent anti-protozoal activity. Chemical Communications, 2019, 55, 7009-7012.	4.1	9
18	Synthesis and Analysis of Naturalâ€Productâ€Like Macrocycles by Tandem Oxidation/Oxa onjugate Addition Reactions. Chemistry - A European Journal, 2019, 25, 6500-6504.	3.3	4

#	Article	IF	CITATIONS
19	Plasmodium PK9 Inhibitors Promote Growth of Liver-Stage Parasites. Cell Chemical Biology, 2019, 26, 411-419.e7.	5.2	11
20	Identification of Hsp90 Inhibitors with Anti-Plasmodium Activity. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	27
21	Discovery of Antimicrobial Lipodepsipeptides Produced by a <i>Serratia</i> sp. within Mosquito Microbiomes. ChemBioChem, 2018, 19, 1590-1594.	2.6	26
22	Exploring the Untapped Biosynthetic Potential of Apicomplexan Parasites. Biochemistry, 2018, 57, 365-375.	2.5	8
23	In silico Screening and Evaluation ofPlasmodium falciparumProtein Kinaseâ€5 (PK5) Inhibitors. ChemMedChem, 2018, 13, 2479-2483.	3.2	6
24	Plasmodium parasite exploits host aquaporin-3 during liver stage malaria infection. PLoS Pathogens, 2018, 14, e1007057.	4.7	51
25	Takinib, a Selective TAK1 Inhibitor, Broadens the Therapeutic Efficacy of TNF-α Inhibition for Cancer and Autoimmune Disease. Cell Chemical Biology, 2017, 24, 1029-1039.e7.	5.2	104
26	Diversity-oriented synthesis yields novel multistage antimalarial inhibitors. Nature, 2016, 538, 344-349.	27.8	214
27	Discovery of Dual-Stage Malaria Inhibitors with New Targets. Antimicrobial Agents and Chemotherapy, 2016, 60, 1430-1437.	3.2	21
28	Current therapies and future possibilities for drug development against liver-stage malaria. Journal of Clinical Investigation, 2016, 126, 2013-2020.	8.2	33
29	The cytoplasmic prolyl-tRNA synthetase of the malaria parasite is a dual-stage target of febrifugine and its analogs. Science Translational Medicine, 2015, 7, 288ra77.	12.4	82
30	Dihydroquinazolinone Inhibitors of Proliferation of Blood and Liver Stage Malaria Parasites. Antimicrobial Agents and Chemotherapy, 2014, 58, 1516-1522.	3.2	12
31	Chemical Interrogation of the Malaria Kinome. ChemBioChem, 2014, 15, 1920-1930.	2.6	29
32	Closing in on a new treatment for sleeping sickness. ELife, 2013, 2, e01042.	6.0	0
33	Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8511-8516.	7.1	132
34	Conformationally Distinct Five-Coordinate Heme–NO Complexes of Soluble Guanylate Cyclase Elucidated by Multifrequency Electron Paramagnetic Resonance (EPR). Biochemistry, 2012, 51, 8384-8390.	2.5	14
35	Antibiotic and Antimalarial Quinones from Fungus-Growing Ant-Associated <i>Pseudonocardia</i> sp Journal of Natural Products, 2012, 75, 1806-1809.	3.0	76
36	Heme-assisted S-Nitrosation Desensitizes Ferric Soluble Guanylate Cyclase to Nitric Oxide. Journal of Biological Chemistry, 2012, 287, 43053-43062.	3.4	57

#	Article	IF	CITATIONS
37	Characterization of <i>Plasmodium</i> Liver Stage Inhibition by Halofuginone. ChemMedChem, 2012, 7, 844-849.	3.2	35
38	Structure and Regulation of Soluble Guanylate Cyclase. Annual Review of Biochemistry, 2012, 81, 533-559.	11.1	388
39	Probing Domain Interactions in Soluble Guanylate Cyclase. Biochemistry, 2011, 50, 4281-4290.	2.5	15
40	The Next Opportunity in Anti-Malaria Drug Discovery: The Liver Stage. PLoS Pathogens, 2011, 7, e1002178.	4.7	54
41	Identification and Validation of Tetracyclic Benzothiazepines as Plasmodium falciparum Cytochrome bc1 Inhibitors. Chemistry and Biology, 2011, 18, 1602-1610.	6.0	50
42	Incorporation of Tyrosine and Glutamine Residues into the Soluble Guanylate Cyclase Heme Distal Pocket Alters NO and O2 Binding. Journal of Biological Chemistry, 2010, 285, 17471-17478.	3.4	17
43	Soluble Guanylate Cyclase Is Activated Differently by Excess NO and by YC-1: Resonance Raman Spectroscopic Evidence. Biochemistry, 2010, 49, 4864-4871.	2.5	23
44	Probing Soluble Guanylate Cyclase Activation by CO and YC-1 Using Resonance Raman Spectroscopy. Biochemistry, 2010, 49, 3815-3823.	2.5	27
45	A nitric oxide/cysteine interaction mediates the activation of soluble guanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21602-21607.	7.1	125
46	Biochemistry of Soluble Guanylate Cyclase. Handbook of Experimental Pharmacology, 2009, , 17-31.	1.8	106
47	Nucleotide Regulation of Soluble Guanylate Cyclase Substrate Specificity. Biochemistry, 2009, 48, 7519-7524.	2.5	37
48	The crystal structure of the catalytic domain of a eukaryotic guanylate cyclase. BMC Structural Biology, 2008, 8, 42.	2.3	97
49	Characterization of Two Different Five-Coordinate Soluble Guanylate Cyclase Ferrous–Nitrosyl Complexes. Biochemistry, 2008, 47, 3892-3899.	2.5	33
50	Dissociation of Nitric Oxide from Soluble Guanylate Cyclase and Heme-Nitric Oxide/Oxygen Binding Domain Constructs. Journal of Biological Chemistry, 2007, 282, 897-907.	3.4	50
51	Butyl Isocyanide as a Probe of the Activation Mechanism of Soluble Guanylate Cyclase. Journal of Biological Chemistry, 2007, 282, 35741-35748.	3.4	28
52	Synthesis and evaluation of a phosphonate analogue of the soluble guanylate cyclase activator YC-1. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 4938-4941.	2.2	7
53	Nitric oxide signaling: no longer simply on or off. Trends in Biochemical Sciences, 2006, 31, 231-239.	7.5	205
54	Characterization of Nitrosoalkane Binding and Activation of Soluble Guanylate Cyclaseâ€. Biochemistry, 2005, 44, 16257-16265.	2.5	18