MarÃ-a Piedad Ruiz-Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7966467/publications.pdf

Version: 2024-02-01

33 papers

1,237 citations

430874 18 h-index 32 g-index

34 all docs

34 docs citations

times ranked

34

1752 citing authors

#	Article	IF	CITATIONS
1	Effects of calcitriol and paricalcitol on renal fibrosis in CKD. Nephrology Dialysis Transplantation, 2021, 36, 793-803.	0.7	26
2	Role of the RANK/RANKL/OPG and Wnt/ \hat{l}^2 -Catenin Systems in CKD Bone and Cardiovascular Disorders. Calcified Tissue International, 2021, 108, 439-451.	3.1	41
3	Hyperphosphatemia-Induced Oxidant/Antioxidant Imbalance Impairs Vascular Relaxation and Induces Inflammation and Fibrosis in Old Mice. Antioxidants, 2021, 10, 1308.	5.1	10
4	Endothelin-1 induces cellular senescence and fibrosis in cultured myoblasts. A potential mechanism of aging-related sarcopenia. Aging, 2020, 12, 11200-11223.	3.1	17
5	Impaired erythropoietin synthesis in chronic kidney disease is caused by alterations in extracellular matrix composition. Journal of Cellular and Molecular Medicine, 2018, 22, 302-314.	3.6	20
6	Hyperphosphatemia Promotes Senescence of Myoblasts by Impairing Autophagy Through Ilk Overexpression, A Possible Mechanism Involved in Sarcopenia., 2018, 9, 769.		28
7	Hyperphosphatemia induces senescence in human endothelial cells by increasing endothelinâ€1 production. Aging Cell, 2017, 16, 1300-1312.	6.7	36
8	Integrin-linked kinase: A new actor in the ageing process?. Experimental Gerontology, 2017, 100, 87-90.	2.8	13
9	Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging, 2017, 9, 778-789.	3.1	78
10	Lamin A is involved in the development of vascular calcification induced by chronic kidney failure and phosphorus load. Bone, 2016, 84, 160-168.	2.9	18
11	MicroRNAs 29b, 133b, and 211 Regulate Vascular Smooth Muscle Calcification Mediated by High Phosphorus. Journal of the American Society of Nephrology: JASN, 2016, 27, 824-834.	6.1	71
12	Glucose Oxidase Induces Cellular Senescence in Immortal Renal Cells through ILK by Downregulating <i>Klotho </i> Gene Expression. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-13.	4.0	11
13	Renal Integrin-Linked Kinase Depletion Induces Kidney cGMP-Axis Upregulation: Consequences on Basal and Acutely Damaged Renal Function. Molecular Medicine, 2015, 21, 873-885.	4.4	10
14	Hyperphosphatemia induces cellular senescence in human aorta smooth muscle cells through integrin linked kinase (ILK) up-regulation. Mechanisms of Ageing and Development, 2015, 152, 43-55.	4.6	17
15	Hyperosmolarity induced by high glucose promotes senescence in human glomerular mesangial cells. International Journal of Biochemistry and Cell Biology, 2014, 54, 98-110.	2.8	20
16	Amadori products promote cellular senescence activating insulin-like growth factor-1 receptor and down-regulating the antioxidant enzyme catalase. International Journal of Biochemistry and Cell Biology, 2013, 45, 1255-1264.	2.8	9
17	Ilk conditional deletion in adult animals increases cyclic GMP-dependent vasorelaxation. Cardiovascular Research, 2013, 99, 535-544.	3.8	8
18	Integrin-linked kinase (ILK) modulates wound healing through regulation of hepatocyte growth factor (HGF). Experimental Cell Research, 2012, 318, 2470-2481.	2.6	24

#	Article	IF	CITATIONS
19	Natural antioxidants and vascular calcification: a possible benefit. Journal of Nephrology, 2011, 24, 669-672.	2.0	18
20	High phosphorus diet induces vascular calcification, a related decrease in bone mass and changes in the aortic gene expression. Bone, 2010, 46, 121-128.	2.9	127
21	Tirofiban increases soluble guanylate cyclase in rat vascular walls: pharmacological and pathophysiological consequences. Cardiovascular Research, 2009, 82, 125-132.	3.8	10
22	Telomerase deficiency promotes oxidative stress by reducing catalase activity. Free Radical Biology and Medicine, 2008, 45, 1243-1251.	2.9	32
23	Role of activator protein-1 on the effect of arginine-glycine-aspartic acid containing peptides on transforming growth factor \hat{l}^21 promoter activity. International Journal of Biochemistry and Cell Biology, 2007, 39, 133-145.	2.8	11
24	Arg–Gly–Asp (RGD)-containing peptides increase soluble guanylate cyclase in contractile cells. Cardiovascular Research, 2006, 69, 359-369.	3.8	12
25	The Leukocyte-Endothelial Cell Interactions are Modulated by Extracellular Matrix Proteins. Cellular Physiology and Biochemistry, 2006, 17, 221-232.	1.6	46
26	Mice Deficient in Telomerase Activity Develop Hypertension Because of an Excess of Endothelin Production. Circulation, 2006, 114, 309-317.	1.6	93
27	Complement activation: the missing link between ADAMTS-13 deficiency and microvascular thrombosis of thrombotic microangiopathies. Thrombosis and Haemostasis, 2005, 93, 443-452.	3.4	81
28	Collagen I upregulates extracellular matrix gene expression and secretion of TGF- \hat{l}^21 by cultured human mesangial cells. American Journal of Physiology - Cell Physiology, 2004, 286, C1335-C1343.	4.6	43
29	Argâ€Glyâ€Aspâ€Ser peptide stimulates transforming growth factorâ€Î²1 transcription and secretion through integrin activation. FASEB Journal, 2003, 17, 1-17.	0.5	36
30	Angiotensin II Induces a Rapid and Transient Increase of Reactive Oxygen Species. Antioxidants and Redox Signaling, 2002, 4, 869-875.	5.4	24
31	Hydrogen peroxide increases extracellular matrix mRNA through TGF- \hat{l}^2 in human mesangial cells. Kidney International, 2001, 59, 87-95.	5.2	196
32	Oxidant/Antioxidant Balance in Isolated Glomeruli and Cultured Mesangial Cells. Free Radical Biology and Medicine, 1997, 22, 49-56.	2.9	29
33	A Dual Effect of Somatostatin on the Proliferation of Cultured Rat Mesangial Cells. Biochemical and Biophysical Research Communications, 1993, 195, 1057-1062.	2.1	22