
Roberta Faccio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7965715/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conditional loss of IKKα in Osterix + cells has no effect on bone but leads to age-related loss of peripheral fat. Scientific Reports, 2022, 12, 4915.	3.3	2
2	The microbiome restrains melanoma bone growth by promoting intestinal NK and Th1 cell homing to bone. Journal of Clinical Investigation, 2022, 132, .	8.2	12
3	Multi-tissue single-cell analysis deconstructs the complex programs of mouse natural killer and type 1 innate lymphoid cells in tissues and circulation. Immunity, 2021, 54, 1320-1337.e4.	14.3	77
4	Constitutive activation of NF-κB inducing kinase (NIK) in the mesenchymal lineage using Osterix (Sp7)- or Fibroblast-specific protein 1 (S100a4)-Cre drives spontaneous soft tissue sarcoma. PLoS ONE, 2021, 16, e0254426.	2.5	4
5	Osteolineage depletion of mitofusin2 enhances cortical bone formation in female mice. Bone, 2021, 148, 115941.	2.9	5
6	Effective Treatment of Established Bone Metastases Can Be Achieved by Combinatorial Osteoclast Blockade and Depletion of Granulocytic Subsets. Cancer Immunology Research, 2021, 9, 1400-1412.	3.4	11
7	Diacylglycerol Kinase ζ Regulates Macrophage Responses in Juvenile Arthritis and Cytokine Storm Syndrome Mouse Models. Journal of Immunology, 2020, 204, 137-146.	0.8	9
8	TREM2 Modulation Remodels the Tumor Myeloid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell, 2020, 182, 886-900.e17.	28.9	309
9	The tethering function of mitofusin2 controls osteoclast differentiation by modulating the Ca2+–NFATc1 axis. Journal of Biological Chemistry, 2020, 295, 6629-6640.	3.4	22
10	Therapy-Induced Senescence Drives Bone Loss. Cancer Research, 2020, 80, 1171-1182.	0.9	69
11	Osterix-Cre marks distinct subsets of CD45- and CD45+ stromal populations in extra-skeletal tumors with pro-tumorigenic characteristics. ELife, 2020, 9, .	6.0	11
12	Importance of the Conserved Carboxyl-Terminal CNOT1 Binding Domain to Tristetraprolin Activity <i>In Vivo</i> . Molecular and Cellular Biology, 2019, 39, .	2.3	17
13	Tmem178 negatively regulates store-operated calcium entry in myeloid cells via association with STIM1. Journal of Autoimmunity, 2019, 101, 94-108.	6.5	12
14	Plcγ2/Tmem178 dependent pathway in myeloid cells modulates the pathogenesis of cytokine storm syndrome. Journal of Autoimmunity, 2019, 100, 62-74.	6.5	25
15	Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nature Communications, 2018, 9, 1250.	12.8	151
16	A Knock-In Tristetraprolin (TTP) Zinc Finger Point Mutation in Mice: Comparison with Complete TTP Deficiency. Molecular and Cellular Biology, 2018, 38, .	2.3	11
17	Phospholipase Cγ1 (PLCγ1) Controls Osteoclast Numbers via Colony-stimulating Factor 1 (CSF-1)-dependent Diacylglycerol/β-Catenin/CyclinD1 Pathway. Journal of Biological Chemistry, 2017, 292, 1178-1186.	3.4	12
18	Antagonizing Integrin β3 Increases Immunosuppression in Cancer. Cancer Research, 2016, 76, 3484-3495.	0.9	58

Roberta Faccio

#	Article	IF	CITATIONS
19	Dickkopf-related protein 1 (Dkk1) regulates the accumulation and function of myeloid derived suppressor cells in cancer. Journal of Experimental Medicine, 2016, 213, 827-840.	8.5	114
20	Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nature Communications, 2016, 7, 11762.	12.8	290
21	Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Reports, 2016, 14, 82-92.	6.4	103
22	Novel ERÎ \pm positive breast cancer model with estrogen independent growth in the bone microenvironment. Oncotarget, 2016, 7, 49751-49764.	1.8	6
23	Alternative NF-κB Regulates RANKL-Induced Osteoclast Differentiation and Mitochondrial Biogenesis via Independent Mechanisms. Journal of Bone and Mineral Research, 2015, 30, 2287-2299.	2.8	70
24	Bone-Immune Cell Crosstalk: Bone Diseases. Journal of Immunology Research, 2015, 2015, 1-11.	2.2	60
25	Pathogenesis of Bone Diseases: The Role of Immune System. Journal of Immunology Research, 2015, 2015, 1-2.	2.2	4
26	Tmem178 acts in a novel negative feedback loop targeting NFATc1 to regulate bone mass. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15654-15659.	7.1	26
27	Diacylglycerol Kinase ζ (DGKζ) Is a Critical Regulator of Bone Homeostasis Via Modulation of c-Fos Levels in Osteoclasts. Journal of Bone and Mineral Research, 2015, 30, 1852-1863.	2.8	22
28	Immune regulation of bone metastasis. BoneKEy Reports, 2014, 3, 600.	2.7	28
29	Cellular Players in Breast Cancer Bone Metastases. Clinical Reviews in Bone and Mineral Metabolism, 2013, 11, 122-132.	0.8	1
30	Down-regulation of PLCγ2–β-catenin pathway promotes activation and expansion of myeloid-derived suppressor cells in cancer. Journal of Experimental Medicine, 2013, 210, 2257-2271.	8.5	71
31	Targeted Inhibition of Phospholipase C γ2 Adaptor Function Blocks Osteoclastogenesis and Protects from Pathological Osteolysis. Journal of Biological Chemistry, 2013, 288, 33634-33641.	3.4	8
32	The Crosstalk between the Bone and the Immune System: Osteoimmunology. Clinical and Developmental Immunology, 2013, 2013, 1-2.	3.3	25
33	PLCÎ ³ 2: where bone and immune cells find their common ground. Annals of the New York Academy of Sciences, 2010, 1192, 124-130.	3.8	21
34	RelB is the NF-κB subunit downstream of NIK responsible for osteoclast differentiation. Proceedings of the United States of America, 2008, 105, 3897-3902.	7.1	139
35	M-CSF Regulates the Cytoskeleton via Recruitment of a Multimeric Signaling Complex to c-Fms Tyr-559/697/721. Journal of Biological Chemistry, 2007, 282, 18991-18999.	3.4	46
36	Rac1 and Rac2 GTPases Play Distinct Roles and Are Essential for Full Osteoclast Differentiation Blood, 2006, 108, 4231-4231.	1.4	1

Roberta Faccio

#	Article	IF	CITATIONS
37	Vav3 regulates osteoclast function and bone mass. Nature Medicine, 2005, 11, 284-290.	30.7	268
38	High dose M-CSF partially rescues the Dap12?/? osteoclast phenotype. Journal of Cellular Biochemistry, 2003, 90, 871-883.	2.6	94
39	Dynamic changes in the osteoclast cytoskeleton in response to growth factors and cell attachment are controlled by β3 integrin. Journal of Cell Biology, 2003, 162, 499-509.	5.2	161
40	c-Fms and the $\hat{1}\pm v\hat{1}^2$ 3 integrin collaborate during osteoclast differentiation. Journal of Clinical Investigation, 2003, 111, 749-758.	8.2	92