Christophe Dunand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7964868/publications.pdf

Version: 2024-02-01

53794 38395 10,715 97 45 95 citations h-index g-index papers 103 103 103 13283 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mixotrophy in aquatic plants, an overlooked ability. Trends in Plant Science, 2022, 27, 147-157.	8.8	7
2	Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nature Communications, 2022, 13, 1310.	12.8	25
3	Class III Peroxidases in Response to Multiple Abiotic Stresses in Arabidopsis thaliana Pyrenean Populations. International Journal of Molecular Sciences, 2022, 23, 3960.	4.1	6
4	Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 5375.	4.1	15
5	Editorial for Special Issue: Research on Plant Cell Wall Biology. Cells, 2022, 11, 1480.	4.1	O
6	Cell-wall microdomain remodeling controls crucial developmental processes. Trends in Plant Science, 2022, 27, 1033-1048.	8.8	14
7	A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis. Briefings in Bioinformatics, 2021, 22, .	6.5	10
8	Highlighting reactive oxygen species as multitaskers in root development. IScience, 2021, 24, 101978.	4.1	53
9	Effects of Dielectric Barrier Ambient Air Plasma on Two Brassicaceae Seeds: Arabidopsis thaliana and Camelina sativa. International Journal of Molecular Sciences, 2021, 22, 9923.	4.1	3
10	Automatic Prediction and Annotation: There Are Strong Biases for Multigenic Families. Frontiers in Genetics, 2021, 12, 697477.	2.3	2
11	Myxospermy Evolution in Brassicaceae: A Highly Complex and Diverse Trait with Arabidopsis as an Uncommon Model. Cells, 2021, 10, 2470.	4.1	6
12	Ethylene Signaling Causing Tolerance of Arabidopsis thaliana Roots to Low pH Stress is Linked to Class III Peroxidase Activity. Journal of Plant Growth Regulation, 2021, 40, 116-125.	5.1	5
13	The Class III Peroxidase Encoding Gene AtPrx62 Positively and Spatiotemporally Regulates the Low pH-Induced Cell Death in Arabidopsis thaliana Roots. International Journal of Molecular Sciences, 2020, 21, 7191.	4.1	7
14	Editorial: Co-Evolution of Plant Cell Wall Polymers. Frontiers in Plant Science, 2020, 11, 598299.	3.6	2
15	Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications, 2020, 11, 5125.	12.8	258
16	CsPrx25, a class III peroxidase in Citrus sinensis, confers resistance to citrus bacterial canker through the maintenance of ROS homeostasis and cell wall lignification. Horticulture Research, 2020, 7, 192.	6.3	35
17	An Integrative Study Showing the Adaptation to Sub-Optimal Growth Conditions of Natural Populations of Arabidopsis thaliana: A Focus on Cell Wall Changes. Cells, 2020, 9, 2249.	4.1	7
18	Seed mucilage evolution: Diverse molecular mechanisms generate versatile ecological functions for particular environments. Plant, Cell and Environment, 2020, 43, 2857-2870.	5. 7	25

#	Article	IF	CITATIONS
19	Coordination of five class III peroxidase-encoding genes for early germination events of Arabidopsis thaliana. Plant Science, 2020, 298, 110565.	3.6	20
20	Global analysis of non-animal peroxidases provides insights into the evolution of this gene family in the green lineage. Journal of Experimental Botany, 2020, 71, 3350-3360.	4.8	15
21	Global Evolutionary Analysis of 11 Gene Families Part of Reactive Oxygen Species (ROS) Gene Network in Four Eucalyptus Species. Antioxidants, 2020, 9, 257.	5.1	6
22	The Cell Wall PAC (Proline-Rich, Arabinogalactan Proteins, Conserved Cysteines) Domain-Proteins Are Conserved in the Green Lineage. International Journal of Molecular Sciences, 2020, 21, 2488.	4.1	5
23	Plant Cell Wall Proteins and Development. International Journal of Molecular Sciences, 2020, 21, 2731.	4.1	10
24	Phenotyping and cell wall polysaccharide composition dataset of five arabidopsis ecotypes grown at optimal or sub-optimal temperatures. Data in Brief, 2019, 25, 104318.	1.0	7
25	Reconstructing trait evolution in plant evo–devo studies. Current Biology, 2019, 29, R1110-R1118.	3.9	47
26	Transcriptomic and cell wall proteomic datasets of rosettes and floral stems from five Arabidopsis thaliana ecotypes grown at optimal or sub-optimal temperature. Data in Brief, 2019, 27, 104581.	1.0	11
27	New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. Scientific Reports, 2019, 9, 8649.	3.3	40
28	RedoxiBase: A database for ROS homeostasis regulated proteins. Redox Biology, 2019, 26, 101247.	9.0	73
29	Medium-Throughput RNA In Situ Hybridization of Serial Sections from Paraffin-Embedded Tissue Microarrays. Methods in Molecular Biology, 2019, 1933, 99-130.	0.9	2
30	Phenotypic Trait Variation as a Response to Altitude-Related Constraints in Arabidopsis Populations. Frontiers in Plant Science, 2019, 10, 430.	3.6	11
31	In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Scientific Reports, 2019, 9, 20373.	3.3	13
32	Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel Plant Cell Wall Domains. Developmental Cell, 2019, 48, 261-276.e8.	7.0	57
33	Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS ONE, 2018, 13, e0195512.	2.5	85
34	The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization. Cell, 2018, 174, 448-464.e24.	28.9	420
35	Cell wall proteome analysis of <i>Arabidopsis thaliana</i> i> mature stems. Proteomics, 2017, 17, 1600449.	2.2	27
36	Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5289-5294.	7.1	201

3

#	Article	IF	CITATIONS
37	Cell wall modifications of two Arabidopsis thaliana ecotypes, Col and Sha, in response to sub-optimal growth conditions: An integrative study. Plant Science, 2017, 263, 183-193.	3.6	26
38	The class <scp>III</scp> peroxidase <scp>PRX</scp> 17 is a direct target of the <scp>MADS</scp> â€box transcription factor AGAMOUSâ€LIKE15 (<scp>AGL</scp> 15) and participates in lignified tissue formation. New Phytologist, 2017, 213, 250-263.	7.3	88
39	Proline Hydroxylation in Cell Wall Proteins: Is It Yet Possible to Define Rules?. Frontiers in Plant Science, 2017, 8, 1802.	3.6	34
40	<i>Arabidopsis thaliana</i> root cell wall proteomics: Increasing the proteome coverage using a combinatorial peptide ligand library and description of unexpected Hyp in peroxidase amino acid sequences. Proteomics, 2016, 16, 491-503.	2.2	45
41	Complementarity of medium-throughput in situ RNA hybridization and tissue-specific transcriptomics: case study of Arabidopsis seed development kinetics. Scientific Reports, 2016, 6, 24644.	3.3	17
42	An enlarged cell wall proteome of <i>Arabidopsis thaliana</i> rosettes. Proteomics, 2016, 16, 3183-3187.	2.2	31
43	The Arabidopsis thaliana Class III Peroxidase AtPRX71 Negatively Regulates Growth under Physiological Conditions and in Response to Cell Wall Damage Plant Physiology, 2015, 169, pp.01464.2015.	4.8	56
44	Arabidopsis seed mucilage secretory cells: regulation and dynamics. Trends in Plant Science, 2015, 20, 515-524.	8.8	95
45	CaM and CML emergence in the green lineage. Trends in Plant Science, 2015, 20, 483-489.	8.8	137
46	Explosive Tandem and Segmental Duplications of Multigenic Families in Eucalyptus grandis. Genome Biology and Evolution, 2015, 7, 1068-1081.	2.5	42
47	Primary transcripts of microRNAs encode regulatory peptides. Nature, 2015, 520, 90-93.	27.8	370
48	Algal ancestor of land plants was preadapted for symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13390-13395.	7.1	292
49	Roles of cell wall peroxidases in plant development. Phytochemistry, 2015, 112, 15-21.	2.9	233
50	Genome-Wide Analysis of the AP2/ERF Family in Eucalyptus grandis: An Intriguing Over-Representation of Stress-Responsive DREB1/CBF Genes. PLoS ONE, 2015, 10, e0121041.	2.5	33
51	Genome-Wide Characterization and Expression Profiling of the AUXIN RESPONSE FACTOR (ARF) Gene Family in Eucalyptus grandis. PLoS ONE, 2014, 9, e108906.	2.5	45
52	Expression of <i>PRX36 </i> , <i>PMEI6 </i> and <i>SBT1.7 </i> is controlled by complex transcription factor regulatory networks for proper seed coat mucilage extrusion. Plant Signaling and Behavior, 2014, 9, e977734.	2.4	21
53	The genome of Eucalyptus grandis. Nature, 2014, 510, 356-362.	27.8	725
54	Automatic multigenic family annotation: risks and solutions. Trends in Genetics, 2014, 30, 323-325.	6.7	24

#	Article	IF	CITATIONS
55	Identification of a hydrogen peroxide signalling pathway in the control of light-dependent germination in Arabidopsis. Planta, 2013, 238, 381-395.	3.2	77
56	GECA: a fast tool for gene evolution and conservation analysis in eukaryotic protein families. Bioinformatics, 2012, 28, 1398-1399.	4.1	21
57	PeroxiBase: a database for large-scale evolutionary analysis of peroxidases. Nucleic Acids Research, 2012, 41, D441-D444.	14.5	141
58	Molecular and biochemical aspects of plant terrestrialization. Perspectives in Plant Ecology, Evolution and Systematics, 2012, 14, 49-59.	2.7	55
59	A burst of plant NADPH oxidases. Trends in Plant Science, 2012, 17, 9-15.	8.8	581
60	Insight into tradeâ€off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytologist, 2012, 194, 1001-1013.	7.3	210
61	Origin of strigolactones in the green lineage. New Phytologist, 2012, 195, 857-871.	7. 3	258
62	Ascorbate peroxidaseâ€related (APxâ€R) is a new hemeâ€containing protein functionally associated with ascorbate peroxidase but evolutionarily divergent. New Phytologist, 2011, 191, 234-250.	7.3	57
63	Ascorbate peroxidase-related (APx-R) is not a duplicable gene. Plant Signaling and Behavior, 2011, 6, 1908-1913.	2.4	13
64	Transcriptome analysis of various flower and silique development stages indicates a set of class III peroxidase genes potentially involved in pod shattering in Arabidopsis thaliana. BMC Genomics, 2010, 11, 528.	2.8	51
65	Reactive Oxygen Species during Plantâ€microorganism Early Interactions. Journal of Integrative Plant Biology, 2010, 52, 195-204.	8.5	275
66	Evolution and expression of class III peroxidases. Archives of Biochemistry and Biophysics, 2010, 500, 58-65.	3.0	73
67	PeroxiBase: a powerful tool to collect and analyse peroxidase sequences from Viridiplantae. Journal of Experimental Botany, 2009, 60, 453-459.	4.8	39
68	Specific functions of individual class III peroxidase genes. Journal of Experimental Botany, 2009, 60, 391-408.	4.8	354
69	PeroxiBase: a database with new tools for peroxidase family classification. Nucleic Acids Research, 2009, 37, D261-D266.	14.5	141
70	An anionic class III peroxidase from zucchini may regulate hypocotyl elongation through its auxin oxidase activity. Planta, 2009, 229, 823-836.	3.2	48
71	The peroxidase–cyclooxygenase superfamily: Reconstructed evolution of critical enzymes of the innate immune system. Proteins: Structure, Function and Bioinformatics, 2008, 72, 589-605.	2.6	140
72	Glutathione peroxidase family – an evolutionary overview. FEBS Journal, 2008, 275, 3959-3970.	4.7	400

#	Article	IF	CITATIONS
73	Localization of Superoxide in the Root Apex of <i> Arabidopsis </i> 2, 131-132.	2.4	13
74	Cell growth and differentiation in Arabidopsis epidermal cells. Journal of Experimental Botany, 2007, 58, 3829-3840.	4.8	62
75	Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. Genomics, 2007, 89, 567-579.	2.9	100
76	Phylogenetic distribution of catalase-peroxidases: Are there patches of order in chaos?. Gene, 2007, 397, 101-113.	2.2	86
77	Morphological and physiological traits of three major Arabidopsis thaliana accessions. Journal of Plant Physiology, 2007, 164, 980-992.	3.5	50
78	PeroxiBase: The peroxidase database. Phytochemistry, 2007, 68, 1605-1611.	2.9	187
79	Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist, 2007, 174, 332-341.	7.3	491
80	Waving and skewing: how gravity and the surface of growth media affect root development in Arabidopsis. New Phytologist, 2007, 176, 37-43.	7.3	109
81	Divergent evolutionary lines of fungal cytochromecperoxidases belonging to the superfamily of bacterial, fungal and plant heme peroxidases. FEBS Letters, 2006, 580, 6655-6664.	2.8	12
82	Patterning of Arabidopsis epidermal cells: epigenetic factors regulate the complex epidermal cell fate pathway. Trends in Plant Science, 2006, 11, 601-609.	8.8	50
83	PeroxiBase: A class III plant peroxidase database. Phytochemistry, 2006, 67, 534-539.	2.9	68
84	Two cell wall associated peroxidases from Arabidopsis influence root elongation. Planta, 2006, 223, 965-974.	3.2	166
85	Plant Photoreceptors: Phylogenetic Overview. Journal of Molecular Evolution, 2005, 61, 559-569.	1.8	56
86	Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 2005, 24, 255-265.	5.6	830
87	Transcession of DNA from Bacteria to Human Cells in Culture: A Possible Role in Oncogenesis. Annals of the New York Academy of Sciences, 2004, 1022, 195-201.	3.8	5
88	Purification and identification of a Ca 2+ -pectate binding peroxidase from Arabidopsis leaves. Phytochemistry, 2004, 65, 307-312.	2.9	41
89	Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 2004, 65, 1331-1342.	2.9	130
90	The class III peroxidase multigenic family in rice and its evolution in land plants⯆⯆⯆. Phytochemistry, 2004, 65, 1879-1893.	2.9	347

#	Article	IF	CITATIONS
91	Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry, 2004, 65, 1331-1331.	2.9	10
92	Performing the paradoxical: how plant peroxidases modify the cell wall. Trends in Plant Science, 2004, 9, 534-540.	8.8	737
93	Expression of a peroxidase gene in zucchini in relation with hypocotyl growth. Plant Physiology and Biochemistry, 2003, 41, 805-811.	5.8	23
94	The MUR3 Gene of Arabidopsis Encodes a Xyloglucan Galactosyltransferase That Is Evolutionarily Related to Animal Exostosins. Plant Cell, 2003, 15, 1662-1670.	6.6	304
95	Identification and characterisation of Ca2+-pectate binding peroxidases inArabidopsis thaliana. Journal of Plant Physiology, 2002, 159, 1165-1171.	3.5	36
96	Characterization of the binding of α-l-Fuc (1â†'2)-β-d-Gal (1â†'), a xyloglucan signal, in blackberry protoplasts. Plant Science, 2000, 151, 183-192.	3.6	13
97	APETALA3-nuclease hybrid protein: a potential tool for APETALA3 target gene mutagenesis. Plant Science, 1999, 148, 19-30.	3.6	2