Maria Grazia Roncarolo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7964242/publications.pdf

Version: 2024-02-01

63 papers 13,974 citations

39 h-index 62 g-index

65 all docs

65 does citations

65 times ranked 14366 citing authors

#	Article	IF	Citations
1	A CD4+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature, 1997, 389, 737-742.	27.8	3,342
2	Correction of ADA-SCID by Stem Cell Gene Therapy Combined with Nonmyeloablative Conditioning. Science, 2002, 296, 2410-2413.	12.6	1,081
3	Interleukinâ€10â€secreting type 1 regulatory T cells in rodents and humans. Immunological Reviews, 2006, 212, 28-50.	6.0	1,071
4	Lentiviral Hematopoietic Stem Cell Gene Therapy Benefits Metachromatic Leukodystrophy. Science, 2013, 341, 1233158.	12.6	998
5	Lentiviral Hematopoietic Stem Cell Gene Therapy in Patients with Wiskott-Aldrich Syndrome. Science, 2013, 341, 1233151.	12.6	900
6	Reprogramming human T cell function and specificity with non-viral genome targeting. Nature, 2018, 559, 405-409.	27.8	630
7	Regulatory T cells: recommendations to simplify the nomenclature. Nature Immunology, 2013, 14, 307-308.	14.5	537
8	Th17 Cells Express Interleukin-10 Receptor and Are Controlled by Foxp3â ⁻ and Foxp3+ Regulatory CD4+ T Cells in an Interleukin-10-Dependent Manner. Immunity, 2011, 34, 554-565.	14.3	529
9	Defective regulatory and effector T cell functions in patients with FOXP3 mutations. Journal of Clinical Investigation, 2006, 116, 1713-1722.	8.2	462
10	Loss of Mismatched HLA in Leukemia after Stem-Cell Transplantation. New England Journal of Medicine, 2009, 361, 478-488.	27.0	459
11	Differentiation of Tr1 cells by immature dendritic cells requires IL-10 but not CD25+CD4+ Tr cells. Blood, 2005, 105, 1162-1169.	1.4	435
12	The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases. Immunity, 2018, 49, 1004-1019.	14.3	230
13	Tr1 Cells and the Counter-Regulation of Immunity: Natural Mechanisms and Therapeutic Applications. Current Topics in Microbiology and Immunology, 2014, 380, 39-68.	1.1	191
14	InÂVivo Tracking of Human Hematopoiesis Reveals Patterns of Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell Stem Cell, 2016, 19, 107-119.	11.1	187
15	Human IL2RA null mutation mediates immunodeficiency with lymphoproliferation and autoimmunity. Clinical Immunology, 2013, 146, 248-261.	3.2	186
16	Update on the safety and efficacy of retroviral gene therapy for immunodeficiency due to adenosine deaminase deficiency. Blood, 2016, 128, 45-54.	1.4	173
17	Lentiviral haemopoietic stem/progenitor cell gene therapy for treatment of Wiskott-Aldrich syndrome: interim results of a non-randomised, open-label, phase 1/2 clinical study. Lancet Haematology,the, 2019, 6, e239-e253.	4.6	166
18	In vivo tracking of T cells in humans unveils decade-long survival and activity of genetically modified T memory stem cells. Science Translational Medicine, 2015, 7, 273ra13.	12.4	160

#	Article	IF	CITATIONS
19	Gene correction for SCID-X1 in long-term hematopoietic stem cells. Nature Communications, 2019, 10, 1634.	12.8	140
20	The Cellular and Molecular Mechanisms of Immuno-Suppression by Human Type 1 Regulatory T Cells. Frontiers in Immunology, 2012, 3, 30.	4.8	138
21	Hurdles in therapy with regulatory T cells. Science Translational Medicine, 2015, 7, 304ps18.	12.4	136
22	CD4 ⁺ T Cells from IPEX Patients Convert into Functional and Stable Regulatory T Cells by <i>FOXP3</i> Gene Transfer. Science Translational Medicine, 2013, 5, 215ra174.	12.4	129
23	Hepatocyteâ€targeted expression by integraseâ€defective lentiviral vectors induces antigenâ€specific tolerance in mice with low genotoxic risk. Hepatology, 2011, 53, 1696-1707.	7.3	123
24	Killing of myeloid APCs via HLA class I, CD2 and CD226 defines a novel mechanism of suppression by human Tr1 cells. European Journal of Immunology, 2011, 41, 1652-1662.	2.9	122
25	Tregopathies: Monogenic diseases resulting in regulatory T-cell deficiency. Journal of Allergy and Clinical Immunology, 2018, 142, 1679-1695.	2.9	106
26	Molecular and functional heterogeneity of IL-10-producing CD4+ T cells. Nature Communications, 2018, 9, 5457.	12.8	93
27	Development of \hat{l}^2 -globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Science Translational Medicine, 2021, 13, .	12.4	82
28	Evidence for Long-term Efficacy and Safety of Gene Therapy for Wiskott–Aldrich Syndrome in Preclinical Models. Molecular Therapy, 2009, 17, 1073-1082.	8.2	77
29	Molecular and functional characterization of allogantigen-specific anergic T cells suitable for cell therapy. Haematologica, 2010, 95, 2134-2143.	3.5	63
30	Engineered T Regulatory Type 1 Cells for Clinical Application. Frontiers in Immunology, 2018, 9, 233.	4.8	60
31	Type 1 regulatory T cells are associated with persistent split erythroid/lymphoid chimerism after allogeneic hematopoietic stem cell transplantation for thalassemia. Haematologica, 2009, 94, 1415-1426.	3.5	57
32	Liver gene therapy by lentiviral vectors reverses antiâ€factor <scp>IX</scp> preâ€existing immunity in haemophilic mice. EMBO Molecular Medicine, 2013, 5, 1684-1697.	6.9	55
33	Insulin B chain 9–23 gene transfer to hepatocytes protects from type 1 diabetes by inducing Ag-specific FoxP3 ⁺ T _{regs} . Science Translational Medicine, 2015, 7, 289ra81.	12.4	55
34	Gene therapy for primary immunodeficiency. Human Molecular Genetics, 2019, 28, R15-R23.	2.9	55
35	Coexpression of CD163 and CD141 identifies human circulating IL-10-producing dendritic cells (DC-10). Cellular and Molecular Immunology, 2020, 17, 95-107.	10.5	54
36	Induction of anergic allergen-specific suppressor T cells using tolerogenic dendritic cells derived from children with allergies to house dust mites. Journal of Allergy and Clinical Immunology, 2010, 125, 727-736.	2.9	51

#	Article	IF	CITATIONS
37	Gene Therapy for Adenosine Deaminase Deficiency: A Comprehensive Evaluation of Short- and Medium-Term Safety. Molecular Therapy, 2018, 26, 917-931.	8.2	50
38	Genome editing of donor-derived T-cells to generate allogenic chimeric antigen receptor-modified T cells: Optimizing $\hat{1}\pm\hat{1}^2$ T cell-depleted haploidentical hematopoietic stem cell transplantation. Haematologica, 2021, 106, 847-858.	3.5	46
39	Lentiviral Gene Therapy in HSCs Restores Lineage-Specific Foxp3 Expression and Suppresses Autoimmunity in a Mouse Model of IPEX Syndrome. Cell Stem Cell, 2019, 24, 309-317.e7.	11.1	45
40	Minimum Information about T Regulatory Cells: A Step toward Reproducibility and Standardization. Frontiers in Immunology, 2017, 8, 1844.	4.8	43
41	B-cell reconstitution after lentiviral vector–mediated gene therapy in patients with Wiskott-Aldrich syndrome. Journal of Allergy and Clinical Immunology, 2015, 136, 692-702.e2.	2.9	41
42	IL-10-Engineered Human CD4+ Tr1 Cells Eliminate Myeloid Leukemia in an HLA Class I-Dependent Mechanism. Molecular Therapy, 2017, 25, 2254-2269.	8.2	40
43	Alloantigen-specific type 1 regulatory T cells suppress through CTLA-4 and PD-1 pathways and persist long-term in patients. Science Translational Medicine, 2021, 13, eabf5264.	12.4	40
44	Rapamycin Combined with Anti-CD45RB mAb and IL-10 or with G-CSF Induces Tolerance in a Stringent Mouse Model of Islet Transplantation. PLoS ONE, 2011, 6, e28434.	2.5	36
45	Graft Engineering and Adoptive Immunotherapy: New Approaches to Promote Immune Tolerance After Hematopoietic Stem Cell Transplantation. Frontiers in Immunology, 2019, 10, 1342.	4.8	33
46	Gene therapy for Wiskott-Aldrich syndrome: History, new vectors, future directions. Journal of Allergy and Clinical Immunology, 2020, 146, 262-265.	2.9	31
47	B-cell development and functions and therapeutic options in adenosine deaminase–deficient patients. Journal of Allergy and Clinical Immunology, 2014, 133, 799-806.e10.	2.9	30
48	Peanut-specific type 1 regulatory T cells induced inÂvitro from allergic subjects are functionally impaired. Journal of Allergy and Clinical Immunology, 2018, 141, 202-213.e8.	2.9	30
49	Immune responses in liver-directed lentiviral gene therapy. Translational Research, 2013, 161, 230-240.	5.0	21
50	The Yin and Yang of Type 1 Regulatory T Cells: From Discovery to Clinical Application. Frontiers in Immunology, 2021, 12, 693105.	4.8	18
51	Role of human forkhead box P3 in early thymic maturation and peripheral T-cell homeostasis. Journal of Allergy and Clinical Immunology, 2018, 142, 1909-1921.e9.	2.9	17
52	APVO210: A Bispecific Anti-CD86-IL-10 Fusion Protein (ADAPTIRâ,,¢) to Induce Antigen-Specific T Regulatory Type 1 Cells. Frontiers in Immunology, 2018, 9, 881.	4.8	13
53	Co-Expression of FOXP3FL and FOXP3Δ2 Isoforms Is Required for Optimal Treg-Like Cell Phenotypes and Suppressive Function. Frontiers in Immunology, 2021, 12, 752394.	4.8	13
54	BHLHE40 Regulates IL-10 and IFN- \hat{I}^3 Production in T Cells but Does Not Interfere With Human Type 1 Regulatory T Cell Differentiation. Frontiers in Immunology, 2021, 12, 683680.	4.8	11

#	Article	IF	Citations
55	Engineered type 1 regulatory T cells designed for clinical use kill primary pediatric acute myeloid leukemia cells. Haematologica, 2021, 106, 2588-2597.	3.5	11
56	InsB9-23 Gene Transfer to Hepatocyte-Based Combined Therapy Abrogates Recurrence of Type 1 Diabetes After Islet Transplantation. Diabetes, 2021, 70, 171-181.	0.6	7
57	Pre-clinical development and molecular characterization of an engineered type 1 regulatory T-cell product suitable for immunotherapy. Cytotherapy, 2021, 23, 1017-1028.	0.7	5
58	Lentiviral Mediated Gene Therapy for Pyruvate Kinase Deficiency: Interim Results of a Global Phase 1 Study for Adult and Pediatric Patients. Blood, 2021, 138, 563-563.	1.4	4
59	Regulatory Type 1 T Cell Infusion in Mismatched Related or Unrelated Hematopoietic Stem Cell Transplantation (HSCT) for Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 2020, 26, S272-S273.	2.0	2
60	Downregulation of SATB1 by miRNAs reduces megakaryocyte/erythroid progenitor expansion in preclinical models of Diamond–Blackfan anemia. Experimental Hematology, 2022, 111, 66-78.	0.4	2
61	Engineering Human Invariant Natural Killer T (iNKT) Cells to Overexpress Immunomodulatory Cytokines. Blood, 2021, 138, 3888-3888.	1.4	1
62	Celebrating 20 years of FOCIS. Science Immunology, 2020, 5, .	11.9	0
63	The Women of FOCIS: Promoting Equality and Inclusiveness in a Professional Federation of Clinical Immunology Societies. Frontiers in Immunology, 2022, 13, 816535.	4.8	O