
Gurjit Khurana Hershey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/796313/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TSLP disease-associated genetic variants combined with airway TSLP expression influence asthma risk. Journal of Allergy and Clinical Immunology, 2022, 149, 79-88.	2.9	11
2	Novel role for caspase recruitment domain family member 14 and its genetic variant rs11652075 in skin filaggrin homeostasis. Journal of Allergy and Clinical Immunology, 2022, 149, 708-717.	2.9	6
3	Longitudinal atopic dermatitis endotypes: An atopic march paradigm that includes Black children. Journal of Allergy and Clinical Immunology, 2022, 149, 1702-1710.e4.	2.9	25
4	Association of mold levels in urban children's homes with difficult-to-control asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 1481-1485.	2.9	7
5	Vitamin D, skin filaggrin, allergic sensitization, and race: a complex interplay. Annals of Allergy, Asthma and Immunology, 2022, , .	1.0	1
6	Treatment by biomarker-informed endotype vs guideline care in children with difficult-to-treat asthma. Annals of Allergy, Asthma and Immunology, 2022, 128, 535-543.e6.	1.0	2
7	Seasonal airway microbiome and transcriptome interactions promote childhood asthma exacerbations. Journal of Allergy and Clinical Immunology, 2022, 150, 204-213.	2.9	31
8	The Pediatric Asthma Risk Score (PARS): more does not mean better. Annals of Allergy, Asthma and Immunology, 2022, , .	1.0	0
9	Residential greenness, asthma, and lung function among children at high risk of allergic sensitization: a prospective cohort study. Environmental Health, 2022, 21, 52.	4.0	12
10	Nasal DNA methylation differentiates severe from nonâ€severe asthma in Africanâ€American children. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1836-1845.	5.7	19
11	Resolving Clinical Phenotypes into Endotypes in Allergy: Molecular and Omics Approaches. Clinical Reviews in Allergy and Immunology, 2021, 60, 200-219.	6.5	18
12	Biofilm propensity of <i>Staphylococcus aureus</i> skin isolates is associated with increased atopic dermatitis severity and barrier dysfunction in the MPAACH pediatric cohort. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 302-313.	5.7	33
13	<i>NAT1</i> genetic variation increases asthma risk in children with secondhand smoke exposure. Journal of Asthma, 2021, 58, 284-292.	1.7	6
14	Secondâ€hand smoke and NFE2L2 genotype interaction increases paediatric asthma risk and severity. Clinical and Experimental Allergy, 2021, 51, 801-810.	2.9	11
15	Sensitization to peanut, egg or pets is associated with skin barrier dysfunction in children with atopic dermatitis. Clinical and Experimental Allergy, 2021, 51, 666-673.	2.9	17
16	Chromosome 17q12-21 Variants Are Associated with Multiple Wheezing Phenotypes in Childhood. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 864-870.	5.6	24
17	Enhanced Neutralizing Antibody Responses to Rhinovirus C and Age-Dependent Patterns of Infection. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 822-830.	5.6	24
18	Pediatric asthma incidence rates in the United States from 1980 to 2017. Journal of Allergy and Clinical Immunology, 2021, 148, 1270-1280.	2.9	28

#	Article	IF	CITATIONS
19	Inducible expression quantitative trait locus analysis of the MUC5AC gene in asthma in urban populations of children. Journal of Allergy and Clinical Immunology, 2021, 148, 1505-1514.	2.9	14
20	Regional and sociodemographic differences in average BMI among US children in the ECHO program. Obesity, 2021, 29, 2089-2099.	3.0	6
21	Heterogeneity of magnitude, allergen immunodominance, and cytokine polarization of cockroach allergenâ€specific T cell responses in allergic sensitized children. Clinical and Translational Allergy, 2021, 11, e12073.	3.2	6
22	Fibrin(ogen) Mechanistically Contributes to Atopic Dermatitis Pathogenesis and Allergic Sensitization. Blood, 2021, 138, 2097-2097.	1.4	0
23	Skin depletion of <i>Kif3a</i> resembles the pediatric atopic dermatitis transcriptome profile. Human Molecular Genetics, 2021, , .	2.9	0
24	Weighing in on asthma: Insights on BMI, magnesium, and hospitalizations from the Ohio Pediatric Asthma Repository. Journal of Asthma, 2020, 57, 1280-1287.	1.7	2
25	TSLP contributes to allergic airway inflammation induced by diesel exhaust particle exposure in an experimental model of severe asthma. Clinical and Experimental Allergy, 2020, 50, 121-124.	2.9	5
26	IL33 contributes to diesel pollutionâ€mediated increase in experimental asthma severity. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2254-2266.	5.7	28
27	Quantitative and semiquantitative estimates of mold exposure in infancy and childhood respiratory health. Environmental Epidemiology, 2020, 4, e101.	3.0	8
28	On the surface. Annals of Allergy, Asthma and Immunology, 2020, 125, 628-638.	1.0	12
29	Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nature Communications, 2020, 11, 4092.	12.8	24
30	Expression quantitative trait locus fine mapping of the 17q12–21 asthma locus in African American children: a genetic association and gene expression study. Lancet Respiratory Medicine,the, 2020, 8, 482-492.	10.7	47
31	Events in Normal Skin Promote Early-Life Atopic Dermatitis—The MPAACH Cohort. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 2285-2293.e6.	3.8	20
32	Aeroallergen Sensitization, Serum IgE, and Eosinophilia as Predictors of Response to Omalizumab Therapy During the Fall Season Among Children with Persistent Asthma. Journal of Allergy and Clinical Immunology: in Practice, 2020, 8, 3021-3028.e2.	3.8	15
33	Atopic dermatitis independently increases sensitization above parental atopy: The MPAACH study. Journal of Allergy and Clinical Immunology, 2020, 145, 1464-1466.	2.9	7
34	Serum IL-6: AÂbiomarker in childhood asthma?. Journal of Allergy and Clinical Immunology, 2020, 145, 1701-1704.e3.	2.9	34
35	Use of the Pediatric Asthma Risk Score to predict allergic and nonallergic asthma. Annals of Allergy, Asthma and Immunology, 2020, 124, 629-631.e2.	1.0	1
36	Simultaneous skin biome and keratinocyte genomic capture reveals microbiome differences by depth of sampling. Journal of Allergy and Clinical Immunology, 2020, 146, 1442-1445.	2.9	13

#	Article	IF	CITATIONS
37	Cysteamine prevents asthma development and reduces airway hyperresponsiveness in experimental asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2675-2677.	5.7	5
38	Vitamin D supplementation attenuates asthma development following traffic-related particulate matter exposure. Journal of Allergy and Clinical Immunology, 2019, 143, 386-394.e3.	2.9	33
39	Distinct nasal airway bacterial microbiotas differentially relate to exacerbation in pediatric patients with asthma. Journal of Allergy and Clinical Immunology, 2019, 144, 1187-1197.	2.9	117
40	Asthma as an outcome: Exploring multiple definitions of asthma across birth cohorts in the Environmental influences on Child Health Outcomes Children's Respiratory and Environmental Workgroup. Journal of Allergy and Clinical Immunology, 2019, 144, 866-869.e4.	2.9	13
41	The pediatric asthma risk score (PARS): making the move to the most accurate pediatric asthma risk screening tool. Expert Review of Clinical Immunology, 2019, 15, 1115-1118.	3.0	1
42	Interactions between environmental pollutants and genetic susceptibility in asthma risk. Current Opinion in Immunology, 2019, 60, 156-162.	5.5	18
43	TET1 contributes to allergic airway inflammation and regulates interferon and aryl hydrocarbon receptor signaling pathways in bronchial epithelial cells. Scientific Reports, 2019, 9, 7361.	3.3	28
44	Identification of two early life eczema and nonâ€eczema phenotypes with high risk for asthma development. Clinical and Experimental Allergy, 2019, 49, 829-837.	2.9	9
45	Using high-resolution residential greenspace measures in an urban environment to assess risks of allergy outcomes in children. Science of the Total Environment, 2019, 668, 760-767.	8.0	44
46	Commensal Candida albicans Positively Calibrates Systemic Th17 Immunological Responses. Cell Host and Microbe, 2019, 25, 404-417.e6.	11.0	151
47	Transcriptome networks identify mechanisms of viral and nonviral asthma exacerbations in children. Nature Immunology, 2019, 20, 637-651.	14.5	106
48	Transcriptomic Analysis Links Eosinophilic Esophagitis and Atopic Dermatitis. Frontiers in Pediatrics, 2019, 7, 467.	1.9	22
49	A Pediatric Asthma Risk Score to better predict asthma development in young children. Journal of Allergy and Clinical Immunology, 2019, 143, 1803-1810.e2.	2.9	58
50	Loss of GTPase of immunity-associated protein 5 (Gimap5) promotes pathogenic CD4+ T-cell development and allergic airway disease. Journal of Allergy and Clinical Immunology, 2019, 143, 245-257.e6.	2.9	10
51	Rational targeting Cdc42 restrains Th2 cell differentiation and prevents allergic airway inflammation. Clinical and Experimental Allergy, 2019, 49, 92-107.	2.9	28
52	Rhinitis in children and adolescents with asthma: Ubiquitous, difficult to control, and associated with asthma outcomes. Journal of Allergy and Clinical Immunology, 2019, 143, 1003-1011.e10.	2.9	55
53	Environmental exposures and mechanisms in allergy and asthma development. Journal of Clinical Investigation, 2019, 129, 1504-1515.	8.2	195
54	Adjunctive Pharmacotherapies in Children With Asthma Exacerbations Requiring Continuous Albuterol Therapy: Findings From The Ohio Pediatric Asthma Repository. Hospital Pediatrics, 2018, 8, 89-95.	1.3	9

#	Article	IF	CITATIONS
55	Contribution of an impaired epithelial barrier to the atopic march. Annals of Allergy, Asthma and Immunology, 2018, 120, 118-119.	1.0	16
56	Obstruction phenotype as a predictor of asthma severity and instability in children. Journal of Allergy and Clinical Immunology, 2018, 142, 1090-1099.e4.	2.9	36
57	Eosinophilic esophagitis (EoE) genetic susceptibility is mediated by synergistic interactions between EoE-specific and general atopic disease loci. Journal of Allergy and Clinical Immunology, 2018, 141, 1690-1698.	2.9	51
58	GENEASE: real time bioinformatics tool for multi-omics and disease ontology exploration, analysis and visualization. Bioinformatics, 2018, 34, 3160-3168.	4.1	13
59	High number of early respiratory infections in association with allergic sensitization to mold promotes childhood asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1921-1924.e4.	2.9	3
60	TSLP signaling in CD4 ⁺ T cells programs a pathogenic T helper 2 cell state. Science Signaling, 2018, 11, .	3.6	72
61	Leveraging Multilayered "Omics―Data for Atopic Dermatitis: A Road Map to Precision Medicine. Frontiers in Immunology, 2018, 9, 2727.	4.8	93
62	The antiprotease SPINK7 serves as an inhibitory checkpoint for esophageal epithelial inflammatory responses. Science Translational Medicine, 2018, 10, .	12.4	71
63	Ohio Pediatric Asthma Repository: Opportunities to Revise Care Practices to Decrease Time to Physiologic Readiness for Discharge. Hospital Pediatrics, 2018, 8, 305-313.	1.3	5
64	β-Glucan exacerbates allergic asthma independent of fungal sensitization and promotes steroid-resistant T H 2/T H 17 responses. Journal of Allergy and Clinical Immunology, 2017, 139, 54-65.e8.	2.9	78
65	Can we predict fall asthma exacerbations? Validation of the seasonal asthma exacerbation index. Journal of Allergy and Clinical Immunology, 2017, 140, 1130-1137.e5.	2.9	41
66	KIF3A genetic variation is associated with pediatric asthma in the presence of eczema independent of allergic rhinitis. Journal of Allergy and Clinical Immunology, 2017, 140, 595-598.e5.	2.9	18
67	Parental Snoring and Environmental Pollutants, but Not Aeroallergen Sensitization, Are Associated with Childhood Snoring in a Birth Cohort. Pediatric, Allergy, Immunology, and Pulmonology, 2017, 30, 31-38.	0.8	8
68	Staphylococcal Biofilms in Atopic Dermatitis. Current Allergy and Asthma Reports, 2017, 17, 81.	5.3	46
69	Minimally important differences and risk levels for the Composite Asthma Severity Index. Journal of Allergy and Clinical Immunology, 2017, 139, 1052-1055.	2.9	26
70	The nasal methylome and childhood atopic asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 1478-1488.	2.9	133
71	Rhinovirus infection results in stronger and more persistent genomic dysregulation: Evidence for altered innate immune response in asthmatics at baseline, early in infection, and during convalescence. PLoS ONE, 2017, 12, e0178096.	2.5	21
72	Nasal DNA methylation differentiates corticosteroid treatment response in pediatric asthma: A pilot study. PLoS ONE, 2017, 12, e0186150.	2.5	35

#	Article	IF	CITATIONS
73	Endotypes of difficult-to-control asthma in inner-city African American children. PLoS ONE, 2017, 12, e0180778.	2.5	24
74	Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms. Current Allergy and Asthma Reports, 2016, 16, 86.	5.3	53
75	Distinguishing characteristics of difficult-to-control asthma in inner-city children and adolescents. Journal of Allergy and Clinical Immunology, 2016, 138, 1030-1041.	2.9	92
76	Pathways through which asthma risk factors contribute to asthma severity in inner-city children. Journal of Allergy and Clinical Immunology, 2016, 138, 1042-1050.	2.9	64
77	Asthma phenotypes in inner-city children. Journal of Allergy and Clinical Immunology, 2016, 138, 1016-1029.	2.9	120
78	Air pollution, epigenetics, and asthma. Allergy, Asthma and Clinical Immunology, 2016, 12, 51.	2.0	52
79	Airway Epithelial KIF3A Regulates Th2 Responses to Aeroallergens. Journal of Immunology, 2016, 197, 4228-4239.	0.8	12
80	Cultivate Primary Nasal Epithelial Cells from Children and Reprogram into Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2016, , .	0.3	4
81	A combination of dexamethasone and anti–IL-17A treatment can alleviate diesel exhaust particle–induced steroid insensitive asthma. Journal of Allergy and Clinical Immunology, 2016, 138, 924-928.e2.	2.9	17
82	Resolving the etiology of atopic disorders by using genetic analysis of racial ancestry. Journal of Allergy and Clinical Immunology, 2016, 138, 676-699.	2.9	48
83	Ten-eleven translocation 1 (TET1) methylation is associated with childhood asthma and traffic-related air pollution. Journal of Allergy and Clinical Immunology, 2016, 137, 797-805.e5.	2.9	112
84	Genetic approach identifies distinct asthma pathways in overweight <i>vs</i> normal weight children. Allergy: European Journal of Allergy and Clinical Immunology, 2015, 70, 1028-1032.	5.7	7
85	Air pollution and allergic diseases. Current Opinion in Pediatrics, 2015, 27, 724-735.	2.0	56
86	Multiple Transcriptome Data Analysis Reveals Biologically Relevant Atopic Dermatitis Signature Genes and Pathways. PLoS ONE, 2015, 10, e0144316.	2.5	71
87	Genomic architecture of asthma differs by sex. Genomics, 2015, 106, 15-22.	2.9	48
88	Vanin-1 expression and methylation discriminate pediatric asthma corticosteroid treatment response. Journal of Allergy and Clinical Immunology, 2015, 136, 923-931.e3.	2.9	43
89	Heterogeneity in Asthma Care in a Statewide Collaborative: the Ohio Pediatric Asthma Repository. Pediatrics, 2015, 135, 271-279.	2.1	32
90	Dynamic transcriptional and epigenomic reprogramming from pediatric nasal epithelial cells to induced pluripotent stem cells. Journal of Allergy and Clinical Immunology, 2015, 135, 236-244.	2.9	15

#	Article	IF	CITATIONS
91	Secondhand smoke and traffic exhaust confer opposing risks for asthma in normal and overweight children. Obesity, 2015, 23, 32-36.	3.0	11
92	N-acetyltransferase 1 polymorphism increases cotinine levels in Caucasian children exposed to secondhand smoke: the CCAAPS birth cohort. Pharmacogenomics Journal, 2015, 15, 189-195.	2.0	8
93	Timing and Duration of Traffic-related Air Pollution Exposure and the Risk for Childhood Wheeze and Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 421-427.	5.6	90
94	Exposure to allergen and diesel exhaust particles potentiates secondary allergen-specific memory responses, promoting asthma susceptibility. Journal of Allergy and Clinical Immunology, 2015, 136, 295-303.e7.	2.9	115
95	Early-life mold and tree sensitivity is associated with allergic eosinophilic rhinitis at 4 years of age. Annals of Allergy, Asthma and Immunology, 2015, 114, 193-198.e4.	1.0	9
96	Collaborative Interactions between Type 2 Innate Lymphoid Cells and Antigen-Specific CD4+ Th2 Cells Exacerbate Murine Allergic Airway Diseases with Prominent Eosinophilia. Journal of Immunology, 2015, 194, 3583-3593.	0.8	56
97	Enhancing Pediatric Fellows' Research Training: Development of an Office of Pediatric Clinical Fellowships. Journal of Pediatrics, 2015, 167, 506-507.e1.	1.8	4
98	Preseasonal treatment with either omalizumab or an inhaled corticosteroid boost to prevent fall asthma exacerbations. Journal of Allergy and Clinical Immunology, 2015, 136, 1476-1485.	2.9	452
99	Traffic pollution is associated with early childhood aeroallergen sensitization. Annals of Allergy, Asthma and Immunology, 2015, 114, 126-133.e3.	1.0	49
100	SERPINB3/B4 Contributes to Early Inflammation and Barrier Dysfunction in an Experimental Murine Model of Atopic Dermatitis. Journal of Investigative Dermatology, 2015, 135, 160-169.	0.7	61
101	Placenta growth factor augments airway hyperresponsiveness via leukotrienes and IL-13. Journal of Clinical Investigation, 2015, 126, 571-584.	8.2	33
102	Placenta Growth Factor Links the IL-13 Response and the Leukotriene Pathway to Augment Airway Hyper-Responsiveness. Blood, 2015, 126, 977-977.	1.4	0
103	Duration of day care attendance during infancy predicts asthma at the age of seven: the Cincinnati Childhood Allergy and Air Pollution Study. Clinical and Experimental Allergy, 2014, 44, 1274-1281.	2.9	20
104	Reply. Journal of Allergy and Clinical Immunology, 2014, 133, 1496-1497.	2.9	0
105	Epistasis between serine protease inhibitor Kazal-type 5 (SPINK5) and thymic stromal lymphopoietin (TSLP) genes contributes to childhood asthma. Journal of Allergy and Clinical Immunology, 2014, 134, 891-899.e3.	2.9	37
106	Optimum Predictors of Childhood Asthma: Persistent Wheeze or the Asthma Predictive Index?. Journal of Allergy and Clinical Immunology: in Practice, 2014, 2, 709-715.e2.	3.8	47
107	Overexpression of Dimethylarginine Dimethylaminohydrolase 1 Attenuates Airway Inflammation in a Mouse Model of Asthma. PLoS ONE, 2014, 9, e85148.	2.5	21
108	Rank-based genome-wide analysis reveals the association of Ryanodine receptor-2 gene variants with childhood asthma among human populations. Human Genomics, 2013, 7, 16.	2.9	46

GURJIT KHURANA HERSHEY

#	Article	IF	CITATIONS
109	Diesel exhaust particle exposure increases severity of allergic asthma in young mice. Clinical and Experimental Allergy, 2013, 43, 1406-1418.	2.9	63
110	Microbial content of household dust associated with exhaled NO in asthmatic children. Environment International, 2013, 59, 141-147.	10.0	12
111	Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides. Journal of Allergy and Clinical Immunology, 2013, 132, 159-169.e2.	2.9	28
112	Diesel exhaust particle induction of IL-17A contributes toÂsevere asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 1194-1204.e2.	2.9	208
113	IL-13 receptor α2 contributes to development of experimental allergic asthma. Journal of Allergy and Clinical Immunology, 2013, 132, 951-958.e6.	2.9	41
114	Forkhead box protein 3 (FOXP3) hypermethylation is associated with diesel exhaust exposure and risk for childhood asthma. Journal of Allergy and Clinical Immunology, 2013, 131, 592-594.e3.	2.9	62
115	Exacerbation of Allergen-Induced Eczema in TLR4- and TRIF-Deficient Mice. Journal of Immunology, 2013, 191, 3519-3525.	0.8	26
116	Differential Effects of Rapamycin and Dexamethasone in Mouse Models of Established Allergic Asthma. PLoS ONE, 2013, 8, e54426.	2.5	31
117	Diesel Exhaust Particles Induce Cysteine Oxidation and S-Glutathionylation in House Dust Mite Induced Murine Asthma. PLoS ONE, 2013, 8, e60632.	2.5	15
118	The Greater Cincinnati Pediatric Clinic Repository: A Novel Framework for Childhood Asthma and Allergy Research. Pediatric, Allergy, Immunology, and Pulmonology, 2012, 25, 104-113.	0.8	23
119	Genetic variation in small proline rich protein 2B as a predictor for asthma among children with eczema. Annals of Allergy, Asthma and Immunology, 2012, 108, 145-150.e4.	1.0	11
120	Unraveling the relationship between aeroallergen sensitization, gender, secondâ€hand smoke exposure, and impaired lung function. Pediatric Allergy and Immunology, 2012, 23, 479-487.	2.6	25
121	Genetic and epigenetic influence on the response to environmental particulate matter. Journal of Allergy and Clinical Immunology, 2012, 129, 33-41.	2.9	82
122	Infant origins of childhood asthma associated with specific molds. Journal of Allergy and Clinical Immunology, 2012, 130, 639-644.e5.	2.9	163
123	Validating childhood symptoms with physician-diagnosed allergic rhinitis. Annals of Allergy, Asthma and Immunology, 2012, 108, 228-231.	1.0	16
124	Asking the Right Questions to Ascertain Early Childhood Secondhand Smoke Exposures. Journal of Pediatrics, 2012, 160, 1050-1051.	1.8	18
125	Functional Variant in the Autophagy-Related 5 Gene Promotor is Associated with Childhood Asthma. PLoS ONE, 2012, 7, e33454.	2.5	148
126	A nonredundant role for mouse Serpinb3a in the induction of mucus production in asthma. Journal of Allergy and Clinical Immunology, 2011, 127, 254-261.e6.	2.9	37

#	Article	IF	CITATIONS
127	Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production. Journal of Allergy and Clinical Immunology, 2011, 127, 1006-1013.e4.	2.9	86
128	Hexamethylene diisocyanate asthma is associated with genetic polymorphisms of CD14, IL-13, and IL-4 receptor α. Journal of Allergy and Clinical Immunology, 2011, 128, 418-420.	2.9	24
129	High environmental relative moldiness index during infancy as a predictor of asthma at 7 years of age. Annals of Allergy, Asthma and Immunology, 2011, 107, 120-126.	1.0	132
130	Immunodeficiency: a problem with the faucet or the drain?. Annals of Allergy, Asthma and Immunology, 2011, 107, 547-549.	1.0	0
131	Differences in Candidate Gene Association between European Ancestry and African American Asthmatic Children. PLoS ONE, 2011, 6, e16522.	2.5	61
132	Identification of KIF3A as a Novel Candidate Gene for Childhood Asthma Using RNA Expression and Population Allelic Frequencies Differences. PLoS ONE, 2011, 6, e23714.	2.5	46
133	Opposing Effects of Cat and Dog Ownership and Allergic Sensitization on Eczema in an Atopic Birth Cohort. Journal of Pediatrics, 2011, 158, 265-271.e5.	1.8	49
134	Genetic Biomarkers of Health-Related Quality of Life in Pediatric Asthma. Journal of Pediatrics, 2011, 159, 21-26.e1.	1.8	9
135	Comparison of measures of marker informativeness for ancestry and admixture mapping. BMC Genomics, 2011, 12, 622.	2.8	65
136	Rapamycin Attenuates Airway Hyperreactivity, Goblet Cells, and IgE in Experimental Allergic Asthma. Journal of Immunology, 2011, 187, 5756-5763.	0.8	67
137	Eczema in Early Life: Genetics, the Skin Barrier, and Lessons Learned from Birth Cohort Studies. Journal of Pediatrics, 2010, 157, 704-714.	1.8	34
138	Exposure to traffic exhaust and night cough during early childhood: the CCAAPS birth cohort. Pediatric Allergy and Immunology, 2010, 21, 253-259.	2.6	48
139	Genetic and Environmental Risk Factors for Childhood Eczema Development and Allergic Sensitization in the CCAAPS Cohort. Journal of Investigative Dermatology, 2010, 130, 430-437.	0.7	37
140	IL-13Rα2 Has a Protective Role in a Mouse Model of Cutaneous Inflammation. Journal of Immunology, 2010, 185, 6802-6808.	0.8	34
141	Importance of Cytokines in Murine Allergic Airway Disease and Human Asthma. Journal of Immunology, 2010, 184, 1663-1674.	0.8	246
142	Breast-feeding, aeroallergen sensitization, and environmental exposures during infancy are determinants of childhood allergic rhinitis. Journal of Allergy and Clinical Immunology, 2010, 125, 1054-1060.e1.	2.9	59
143	Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. Journal of Allergy and Clinical Immunology, 2010, 126, 160-165.e3.	2.9	236
144	Application of genetic/genomic approaches to allergic disorders. Journal of Allergy and Clinical Immunology, 2010, 126, 425-436.	2.9	20

#	Article	IF	CITATIONS
145	Exposure to Traffic-related Particles and Endotoxin during Infancy Is Associated with Wheezing at Age 3 Years. American Journal of Respiratory and Critical Care Medicine, 2009, 180, 1068-1075.	5.6	101
146	Associations between Multiple Environmental Exposures and Glutathione S-transferase P1 on Persistent Wheezing in a Birth Cohort. Journal of Pediatrics, 2009, 154, 401-408.e1.	1.8	62
147	Comparison of anthropometric measures of obesity in childhood allergic asthma: Central obesity is most relevant. Journal of Allergy and Clinical Immunology, 2009, 123, 1321-1327.e12.	2.9	81
148	Early Growth Response-1 Suppresses Epidermal Growth Factor Receptor–Mediated Airway Hyperresponsiveness and Lung Remodeling in Mice. American Journal of Respiratory Cell and Molecular Biology, 2009, 41, 415-425.	2.9	36
149	Eosinophil viability is increased by acidic pH in a cAMP- and GPR65-dependent manner. Blood, 2009, 114, 2774-2782.	1.4	89
150	Environmental Tobacco Smoke and Interleukin 4 Polymorphism (C-589T) Gene: Environment Interaction Increases Risk of Wheezing in African-American Infants. Journal of Pediatrics, 2008, 152, 709-715.e1.	1.8	6
151	Intrinsically defective skin barrier function in children with atopic dermatitis correlates with disease severity. Journal of Allergy and Clinical Immunology, 2008, 121, 725-730.e2.	2.9	148
152	Surfactant protein D alters allergic lung responses in mice and human subjects. Journal of Allergy and Clinical Immunology, 2008, 121, 1140-1147.e2.	2.9	57
153	Matrix metalloproteinase 8 contributes to solubilization of IL-13 receptor α2 in vivo. Journal of Allergy and Clinical Immunology, 2008, 122, 625-632.	2.9	33
154	Signal transducer and activator of transcription signals in allergic disease. Journal of Allergy and Clinical Immunology, 2007, 119, 529-541.	2.9	29
155	A Comparison of Proximity and Land Use Regression Traffic Exposure Models and Wheezing in Infants. Environmental Health Perspectives, 2007, 115, 278-284.	6.0	161
156	Relative moldiness index as predictor of childhood respiratory illness. Journal of Exposure Science and Environmental Epidemiology, 2007, 17, 88-94.	3.9	45
157	Aeroallergen Sensitization in Healthy Children: Racial and Socioeconomic Correlates. Journal of Pediatrics, 2007, 151, 187-191.	1.8	35
158	IL-13 receptor isoforms: Breaking through the complexity. Current Allergy and Asthma Reports, 2007, 7, 338-345.	5.3	71
159	SPDEF regulates goblet cell hyperplasia in the airway epithelium. Journal of Clinical Investigation, 2007, 117, 978-988.	8.2	241
160	Epicutaneous aeroallergen exposure induces systemic TH2 immunity that predisposes to allergic nasal responses. Journal of Allergy and Clinical Immunology, 2006, 118, 62-69.	2.9	84
161	Influence of dog ownership and high endotoxin on wheezing and atopy during infancy. Journal of Allergy and Clinical Immunology, 2006, 118, 1271-1278.	2.9	91
162	High prevalence of aeroallergen sensitization among infants of atopic parents. Journal of Pediatrics, 2006, 149, 505-511.	1.8	111

GURJIT KHURANA HERSHEY

#	Article	IF	CITATIONS
163	Environmental risk factors of rhinitis in early infancy. Pediatric Allergy and Immunology, 2006, 17, 278-284.	2.6	94
164	Altered gene expression profiles in nasal respiratory epithelium reflect stable versus acute childhood asthma. Journal of Allergy and Clinical Immunology, 2005, 115, 243-251.	2.9	81
165	Functional effect of the R110Q IL13 genetic variant alone and in combination with IL4RA genetic variantsa~†. Journal of Allergy and Clinical Immunology, 2004, 114, 553-560.	2.9	65
166	Turning off signal transducer and activator of transcription (STAT): The negative regulation of STAT signaling. Journal of Allergy and Clinical Immunology, 2004, 114, 476-489.	2.9	57
167	The â^'159 C→T polymorphism of CD14 is associated with nonatopic asthma and food allergy. Journal of Allergy and Clinical Immunology, 2003, 112, 438-444.	2.9	105
168	IL-13 receptors and signaling pathways: An evolving web. Journal of Allergy and Clinical Immunology, 2003, 111, 677-690.	2.9	516
169	Analysis of the Life Cycle of Stat6. Journal of Biological Chemistry, 2002, 277, 36563-36569.	3.4	59
170	A Novel Mechanism by Which Interferon-Î ³ Can Regulate Interleukin (IL)-13 Responses. Journal of Biological Chemistry, 2002, 277, 10387-10393.	3.4	84
171	Analysis of the Ser786Pro Interleukin-4 Receptor α Allelic Variant in Allergic and Nonallergic Asthma and Its Functional Consequences. Clinical Immunology, 2001, 100, 298-304.	3.2	15
172	The R576 IL-4 receptor α allele correlates with asthma severityâ~†â~†â~†â~ Journal of Allergy and Clinical Immunology, 1999, 104, 1008-1014.	2.9	143
173	The Association of Atopy with a Gain-of-Function Mutation in the α Subunit of the Interleukin-4 Receptor. New England Journal of Medicine, 1997, 337, 1720-1725.	27.0	737