
Shuguang Lyu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962747/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of recyclable nano zero-valent iron encapsulated L-cysteine catalytic cylinder product for degradation of BTEX in groundwater by persulfate oxidation. Water Science and Technology: Water Supply, 2022, 22, 555-573.	2.1	5
2	Insights into naphthalene degradation in aqueous solution and soil slurry medium: Performance and mechanisms. Chemosphere, 2022, 291, 132761.	8.2	16
3	Quantitatively identifying the emission sources of pharmaceutically active compounds (PhACs) in the surface water: Method development, verification and application in Huangpu River, China. Science of the Total Environment, 2022, 815, 152783.	8.0	5
4	Efficient catalytic degradation of trichloroethylene in persulfate system by Ca-Fe2O3 and Cu-Fe2O3 na cu-Fe2O3 nanoparticles: Mechanistic insights. Journal of Environmental Chemical Engineering, 2022, 10, 107196.	6.7	8
5	Comparative studies on trichloroethylene degradation by Fe foam catalyzing three hydrogen peroxide-based oxidants. Journal of Environmental Chemical Engineering, 2022, 10, 107335.	6.7	1
6	Effective degradation of 1,2-dichloroethane in calcium peroxide activated by Fe(III): performance and mechanisms. Water Science and Technology: Water Supply, 2022, 22, 5589-5602.	2.1	3
7	Mechanism of trichloroethylene degradation in Fe(II)-activated peroxymonosulfate coupled with citric acid system in the presence of surfactants. Environmental Science and Pollution Research, 2022, 29, 53176-53190.	5.3	2
8	Insights into the role of nanoscale zeroâ€valent iron in Fenton oxidation and its application in naphthalene degradation from water and slurry systems. Water Environment Research, 2022, 94, e10710.	2.7	7
9	Efficient naphthalene degradation in FeS2-activated nano calcium peroxide system: Performance and mechanisms. Journal of Hazardous Materials, 2022, 432, 128693.	12.4	12
10	Elucidating the effect of different desorbents on naphthalene desorption and degradation: Performance and kinetics investigation. Journal of Hazardous Materials, 2022, 434, 128803.	12.4	3
11	Fluoranthene removal in aqueous phase by Fe(II) activated sodium percarbonate: mechanisms and degradation pathways. Research on Chemical Intermediates, 2022, 48, 1645-1663.	2.7	4
12	Insights into the enhanced fluoranthene degradation in citric acid coupled Fe(II)-activated sodium persulfate system. Water Science and Technology: Water Supply, 2022, 22, 4822-4838.	2.1	2
13	Insights into the removal of organic contaminants by calcium sulfite activation with Fe(III): Performance, kinetics, and mechanisms. Water Research, 2022, 221, 118792.	11.3	45
14	Study the activation mechanism of peroxymonosulfate in iron copper systems for trichloroethane degradation. Chemical Engineering Journal Advances, 2022, 11, 100343.	5.2	2
15	Synergistic strengthening of SPC/Fe(II) system by CA coupled with mZVI for trichloroethylene degradation in SDS-containing aqueous solution. Journal of Environmental Chemical Engineering, 2022, 10, 108276.	6.7	5
16	A recyclable polydopamine-functionalized reduced graphene oxide/Fe nanocomposite (PDA@Fe/rGO) for the enhanced degradation of 1,1,1-trichloroethane. Chemical Engineering Journal, 2021, 403, 126405.	12.7	41
17	Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Science of the Total Environment, 2021, 753, 141653.	8.0	60
18	Synthesis of nZVI-Ni@BC composite as a stable catalyst to activate persulfate: Trichloroethylene degradation and insight mechanism. Journal of Environmental Chemical Engineering, 2021, 9, 104808.	6.7	68

Shuguang Lyu

#	Article	IF	CITATIONS
19	Mechanism of surfactant in trichloroethene degradation in aqueous solution by sodium persulfate activated with chelated-Fe(II). Journal of Hazardous Materials, 2021, 407, 124814.	12.4	41
20	Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation. Journal of Environmental Chemical Engineering, 2021, 9, 104591.	6.7	18
21	Trichloroethylene degradation by PVA-coated calcium peroxide nanoparticles in Fe(II)-based catalytic systems: enhanced performance by citric acid and nanoscale iron sulfide. Environmental Science and Pollution Research, 2021, 28, 3121-3135.	5.3	7
22	Rainfall Influences Occurrence of Pharmaceutical and Personal Care Products in Landfill Leachates: Evidence from Seasonal Variations and Extreme Rainfall Episodes. Environmental Science & Technology, 2021, 55, 4822-4830.	10.0	30
23	Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation. Water Science and Technology: Water Supply, 2021, 21, 4429-4441.	2.1	1
24	Naphthalene degradation in aqueous solution by Fe(II) activated persulfate coupled with citric acid. Separation and Purification Technology, 2021, 264, 118441.	7.9	46
25	Mechanism of carbon tetrachloride reduction in Fe(II) activated percarbonate system in the environment of sodium dodecyl sulfate. Separation and Purification Technology, 2021, 266, 118549.	7.9	21
26	Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation. Journal of Hazardous Materials, 2021, 416, 125935.	12.4	26
27	Highly efficient degradation of trichloroethylene in groundwater based on persulfate activation by polyvinylpyrrolidone functionalized Fe/Cu bimetallic nanoparticles. Journal of Environmental Chemical Engineering, 2021, 9, 105341.	6.7	28
28	Insights into enhanced removal of 1,2-dichloroethane by amorphous boron-enhanced Fenton system: Performances and mechanisms. Journal of Hazardous Materials, 2021, 420, 126589.	12.4	22
29	Mechanism of contaminants degradation in aqueous solution by persulfate in different Fe(II)-based synergistic activation environments: Taking chlorinated organic compounds and benzene series as the targets. Separation and Purification Technology, 2021, 273, 118990.	7.9	20
30	Degradation of trichloroethene by citric acid chelated Fe(II) catalyzing sodium percarbonate in the environment of sodium dodecyl sulfate aqueous solution. Chemosphere, 2021, 281, 130798.	8.2	25
31	Enhanced trichloroethylene degradation in the presence of surfactant: Pivotal role of Fe(II)/nZVI catalytic synergy in persulfate system. Separation and Purification Technology, 2021, 272, 118885.	7.9	19
32	Influence of preparation method on copper ferrite characteristics for the efficient degradation of trichloroethylene in persulfate activated system. Journal of Environmental Chemical Engineering, 2021, 9, 106044.	6.7	7
33	Role of Cysteine in Enhanced Degradation of Trichloroethane under Ferrous Percarbonate System. Chemical Engineering Journal, 2021, 423, 130221.	12.7	24
34	Enhancement in reactivity via sulfidation of FeNi@BC for efficient removal of trichloroethylene: Insight mechanism and the role of reactive oxygen species. Science of the Total Environment, 2021, 794, 148674.	8.0	11
35	Comparison of naphthalene removal performance using H2O2, sodium percarbonate and calcium peroxide oxidants activated by ferrous ions and degradation mechanism. Chemosphere, 2021, 283, 131209.	8.2	26
36	Enhanced trichloroethene degradation performance in innovative nanoscale CaO2 coupled with bisulfite system and mechanism investigation. Separation and Purification Technology, 2021, 278, 119539.	7.9	6

SHUGUANG LYU

#	Article	IF	CITATIONS
37	The performance of chlorobenzene degradation in groundwater: comparison of hydrogen peroxide, nanoscale calcium peroxide and sodium percarbonate activated with ferrous iron. Water Science and Technology, 2021, 83, 344-357.	2.5	19
38	<scp>l</scp> â€cysteineâ€modified Fe ₃ O ₄ nanoparticles as a novel heterogeneous catalyst for persulfate activation on BTEX removal. Water Environment Research, 2021, 93, 3023-3036.	2.7	1
39	Insight into Naphthalene Degradation by Nano-calcium Peroxide in Fe(II)-Citric Acid Catalytic Environment. Water, Air, and Soil Pollution, 2021, 232, 1.	2.4	11
40	Utilization of formic acid in nanoscale zero valent iron-catalyzed Fenton system for carbon tetrachloride degradation. Chemical Engineering Journal, 2020, 380, 122537.	12.7	45
41	The performance of nCaO ₂ for BTEX removal: Hydroxyl radical generation pattern and the influences of coâ€existing environmental pollutants. Water Environment Research, 2020, 92, 622-630.	2.7	7
42	Enhanced carbon tetrachloride degradation by hydroxylamine in ferrous ion activated calcium peroxide in the presence of formic acid. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	4
43	Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China. Environment International, 2020, 135, 105404.	10.0	34
44	Application of glutamate to enhance carbon tetrachloride (CT) degradation by Fe(II) activated calcium peroxide in the presence of methanol: CT removal performance and mechanism. Separation and Purification Technology, 2020, 236, 116259.	7.9	6
45	Efficient removal of trichloroethylene in surfactant amended solution by nano FeO-Nickel bimetallic composite activated sodium persulfate process. Chemical Engineering Journal, 2020, 386, 123995.	12.7	43
46	Enhancement of benzene degradation by persulfate oxidation: synergistic effect by nanoscale zero-valent iron (nZVI) and thermal activation. Water Science and Technology, 2020, 82, 998-1008.	2.5	4
47	Degradation of trichloroethylene in aqueous solution by sodium percarbonate activated with Fe(II)-citric acid complex in the presence of surfactant Tween-80. Chemosphere, 2020, 257, 127223.	8.2	34
48	How to detect small microplastics (20–100Âî¼m) in freshwater, municipal wastewaters and landfill leachates? A trial from sampling to identification. Science of the Total Environment, 2020, 733, 139218.	8.0	57
49	Tracking emission sources of PAHs in a region with pollution-intensive industries, Taihu Basin: From potential pollution sources to surface water. Environmental Pollution, 2020, 264, 114674.	7.5	30
50	Municipal Solid Waste Landfills: An Underestimated Source of Pharmaceutical and Personal Care Products in the Water Environment. Environmental Science & Technology, 2020, 54, 9757-9768.	10.0	157
51	Source apportionment of phenolic compounds based on a simultaneous monitoring of surface water and emission sources: A case study in a typical region adjacent to Taihu Lake watershed. Science of the Total Environment, 2020, 722, 137946.	8.0	16
52	Mechanistic insights into the degradation of trichloroethylene by controlled release nano calcium peroxide activated by iron species coupled with nano iron sulfide. Chemical Engineering Journal, 2020, 399, 125754.	12.7	40
53	Trichloroethylene degradation performance in aqueous solution by Fe(II) activated sodium percarbonate in the presence of surfactant sodium dodecyl sulfate. Water Environment Research, 2020, 92, 1142-1151.	2.7	13
54	Synthesis of controlled release calcium peroxide nanoparticles (CR-nCPs): Characterizations, H2O2 liberate performances and pollutant degradation efficiency. Separation and Purification Technology, 2020, 241, 116729.	7.9	34

SHUGUANG LYU

#	Article	IF	CITATIONS
55	Efficient removal of trichloroethene in oxidative environment by anchoring nano FeS on reduced graphene oxide supported nZVI catalyst: The role of FeS on oxidant decomposition and iron leakage. Journal of Hazardous Materials, 2020, 392, 122328.	12.4	27
56	Trichloroethene degradation by nanoscale CaO2 activated with Fe(II)/FeS: The role of FeS and the synergistic activation mechanism of Fe(II)/FeS. Chemical Engineering Journal, 2020, 394, 124830.	12.7	44
57	Enhanced redox degradation of chlorinated hydrocarbons by the Fe(II)-catalyzed calcium peroxide system in the presence of formic acid and citric acid. Journal of Hazardous Materials, 2019, 368, 506-513.	12.4	37
58	Degradation of trichloroethylene in aqueous solution by nanoscale calcium peroxide in the Fe(II)-based catalytic environments. Separation and Purification Technology, 2019, 226, 13-21.	7.9	41
59	Mechanism of carbon tetrachloride reduction in ferrous ion activated calcium peroxide system in the presence of methanol. Chemical Engineering Journal, 2019, 362, 243-250.	12.7	29
60	Insight into CaO2-based Fenton and Fenton-like systems: Strategy for CaO2-based oxidation of organic contaminants. Chemical Engineering Journal, 2019, 361, 919-928.	12.7	44
61	The impact of surface properties and dominant ions on the effectiveness of G-nZVI heterogeneous catalyst for environmental remediation. Science of the Total Environment, 2019, 651, 1182-1188.	8.0	22
62	Electrolytic control of hydrogen peroxide release from calcium peroxide in aqueous solution. Electrochemistry Communications, 2018, 93, 81-85.	4.7	14
63	Pharmaceuticals and personal care products in the urban river across the megacity Shanghai: Occurrence, source apportionment and a snapshot of influence of rainfall. Journal of Hazardous Materials, 2018, 359, 429-436.	12.4	62
64	Enhanced degradation of trichloroethylene in oxidative environment by nZVI/PDA functionalized rGO catalyst. Journal of Hazardous Materials, 2018, 359, 157-165.	12.4	33
65	Insight on the generation of reactive oxygen species in the CaO2/Fe(II) Fenton system and the hydroxyl radical advancing strategy. Chemical Engineering Journal, 2018, 353, 657-665.	12.7	67
66	Degradation of phenanthrene in sulfate radical based oxidative environment by nZVI-PDA functionalized rGO catalyst. Chemical Engineering Journal, 2018, 354, 541-552.	12.7	109
67	Ethanol enhanced carbon tetrachloride degradation in Fe(II) activated calcium peroxide system. Separation and Purification Technology, 2018, 205, 105-112.	7.9	20
68	Elucidation of the oxidation mechanisms and pathways of sulfamethoxazole degradation under Fe(II) activated percarbonate treatment. Science of the Total Environment, 2018, 640-641, 973-980.	8.0	52