
Francesca Vinchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962152/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Iron Toxicity and Chelation Therapy in Hematopoietic Stem Cell Transplant. Transplantation and Cellular Therapy, 2021, 27, 371-379.	1.2	16
2	Vasculoâ€ŧoxic and proâ€inflammatory action of unbound haemoglobin, haem and iron in transfusionâ€dependent patients with haemolytic anaemias. British Journal of Haematology, 2021, 193, 637-658.	2.5	22
3	Screening out the Exposome to Improve Transfusion Quality. HemaSphere, 2021, 5, e605.	2.7	0
4	Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxidants and Redox Signaling, 2021, 35, 387-414.	5.4	18
5	Reshaping Erythrophagocytosis and Iron Recycling by Reticuloendothelial Macrophages. HemaSphere, 2021, 5, e525.	2.7	1
6	Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. European Heart Journal, 2020, 41, 2681-2695.	2.2	162
7	Controversies on the Consequences of Iron Overload and Chelation in MDS. HemaSphere, 2020, 4, e357.	2.7	19
8	Erythroid Differentiation: A Matter of Proteome Remodeling. HemaSphere, 2018, 2, e26.	2.7	2
9	Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death and Differentiation, 2018, 25, 573-588.	11.2	78
10	Scavenging Reactive Oxygen Species Production Normalizes Ferroportin Expression and Ameliorates Cellular and Systemic Iron Disbalances in Hemolytic Mouse Model. Antioxidants and Redox Signaling, 2018, 29, 484-499.	5.4	21
11	TET2 deficiency leads to stem cell factor–dependent clonal expansion of dysfunctional erythroid progenitors. Blood, 2018, 132, 2406-2417.	1.4	47
12	Shaping Macrophage Plasticity with Iron – Towards a New Therapeutic Approach. European Oncology and Haematology, 2018, 14, 76.	0.0	1
13	Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress. Free Radical Biology and Medicine, 2017, 108, 452-464.	2.9	38
14	Data demonstrating the anti-oxidant role of hemopexin in the heart. Data in Brief, 2017, 13, 69-76.	1.0	13
15	Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages. Frontiers in Immunology, 2017, 8, 1479.	4.8	121
16	Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood, 2016, 127, 473-486.	1.4	213
17	Low-Iron Diet and Chelation Therapy Rescue Severe Atherosclerosis Associated with High Circulating Iron Levels. Blood, 2016, 128, 199-199.	1.4	2
18	The Heme Scavenger Hemopexin Reverts Heme-Driven Pro-Inflammatory Phenotypic Switching of Macrophages in Sickle Cell Disease. Blood, 2015, 126, 2205-2205.	1.4	0

FRANCESCA VINCHI

#	Article	IF	CITATIONS
19	Atherogenesis and iron: from epidemiology to cellular level. Frontiers in Pharmacology, 2014, 5, 94.	3.5	121
20	Haptoglobin, hemopexin, and related defense pathwaysââ,¬â€basic science, clinical perspectives, and drug development. Frontiers in Physiology, 2014, 5, 415.	2.8	204
21	Heme Exporter FLVCR1a Regulates Heme Synthesis and DegradationÂand Controls Activity of Cytochromes P450. Gastroenterology, 2014, 146, 1325-1338.	1.3	59
22	Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Frontiers in Pharmacology, 2014, 5, 61.	3.5	305
23	Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases. Circulation, 2013, 127, 1317-1329.	1.6	197
24	Therapeutic Approaches to Limit Hemolysis-Driven Endothelial Dysfunction: Scavenging Free Heme to Preserve Vasculature Homeostasis. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	4.0	38
25	The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. Journal of Clinical Investigation, 2012, 122, 4569-4579.	8.2	153
26	Inhibition of Neutrophil Migration by Hemopexin Leads to Increased Mortality Due to Sepsis in Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 922-931.	5.6	40
27	Heme Scavenging and the Other Facets of Hemopexin. Antioxidants and Redox Signaling, 2010, 12, 305-320.	5.4	220
28	Hemopexin Prevents Endothelial Damage and Liver Congestion in a Mouse Model of Heme Overload. American Journal of Pathology, 2008, 173, 289-299.	3.8	113
29	Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling. , 0, , .		7