Francesca Vinchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962152/publications.pdf Version: 2024-02-01

EDANCESCA VINCHI

#	Article	IF	CITATIONS
1	Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Frontiers in Pharmacology, 2014, 5, 61.	3.5	305
2	Heme Scavenging and the Other Facets of Hemopexin. Antioxidants and Redox Signaling, 2010, 12, 305-320.	5.4	220
3	Hemopexin therapy reverts heme-induced proinflammatory phenotypic switching of macrophages in a mouse model of sickle cell disease. Blood, 2016, 127, 473-486.	1.4	213
4	Haptoglobin, hemopexin, and related defense pathwaysââ,¬â€basic science, clinical perspectives, and drug development. Frontiers in Physiology, 2014, 5, 415.	2.8	204
5	Hemopexin Therapy Improves Cardiovascular Function by Preventing Heme-Induced Endothelial Toxicity in Mouse Models of Hemolytic Diseases. Circulation, 2013, 127, 1317-1329.	1.6	197
6	Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. European Heart Journal, 2020, 41, 2681-2695.	2.2	162
7	The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. Journal of Clinical Investigation, 2012, 122, 4569-4579.	8.2	153
8	Atherogenesis and iron: from epidemiology to cellular level. Frontiers in Pharmacology, 2014, 5, 94.	3.5	121
9	Iron Induces Anti-tumor Activity in Tumor-Associated Macrophages. Frontiers in Immunology, 2017, 8, 1479.	4.8	121
10	Hemopexin Prevents Endothelial Damage and Liver Congestion in a Mouse Model of Heme Overload. American Journal of Pathology, 2008, 173, 289-299.	3.8	113
11	Heme accumulation in endothelial cells impairs angiogenesis by triggering paraptosis. Cell Death and Differentiation, 2018, 25, 573-588.	11.2	78
12	Heme Exporter FLVCR1a Regulates Heme Synthesis and DegradationÂand Controls Activity of Cytochromes P450. Gastroenterology, 2014, 146, 1325-1338.	1.3	59
13	TET2 deficiency leads to stem cell factor–dependent clonal expansion of dysfunctional erythroid progenitors. Blood, 2018, 132, 2406-2417.	1.4	47
14	Inhibition of Neutrophil Migration by Hemopexin Leads to Increased Mortality Due to Sepsis in Mice. American Journal of Respiratory and Critical Care Medicine, 2011, 183, 922-931.	5.6	40
15	Therapeutic Approaches to Limit Hemolysis-Driven Endothelial Dysfunction: Scavenging Free Heme to Preserve Vasculature Homeostasis. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-11.	4.0	38
16	Hemopexin counteracts systolic dysfunction induced by heme-driven oxidative stress. Free Radical Biology and Medicine, 2017, 108, 452-464.	2.9	38
17	Vasculoâ€ŧoxic and proâ€inflammatory action of unbound haemoglobin, haem and iron in transfusionâ€dependent patients with haemolytic anaemias. British Journal of Haematology, 2021, 193, 637-658.	2.5	22
18	Scavenging Reactive Oxygen Species Production Normalizes Ferroportin Expression and Ameliorates Cellular and Systemic Iron Disbalances in Hemolytic Mouse Model. Antioxidants and Redox Signaling, 2018, 29, 484-499.	5.4	21

FRANCESCA VINCHI

#	Article	IF	CITATIONS
19	Controversies on the Consequences of Iron Overload and Chelation in MDS. HemaSphere, 2020, 4, e357.	2.7	19
20	Non-Transferrin-Bound Iron in the Spotlight: Novel Mechanistic Insights into the Vasculotoxic and Atherosclerotic Effect of Iron. Antioxidants and Redox Signaling, 2021, 35, 387-414.	5.4	18
21	Iron Toxicity and Chelation Therapy in Hematopoietic Stem Cell Transplant. Transplantation and Cellular Therapy, 2021, 27, 371-379.	1.2	16
22	Data demonstrating the anti-oxidant role of hemopexin in the heart. Data in Brief, 2017, 13, 69-76.	1.0	13
23	Haptoglobin and Hemopexin in Heme Detoxification and Iron Recycling. , 0, , .		7
24	Erythroid Differentiation: A Matter of Proteome Remodeling. HemaSphere, 2018, 2, e26.	2.7	2
25	Low-Iron Diet and Chelation Therapy Rescue Severe Atherosclerosis Associated with High Circulating Iron Levels. Blood, 2016, 128, 199-199.	1.4	2
26	Reshaping Erythrophagocytosis and Iron Recycling by Reticuloendothelial Macrophages. HemaSphere, 2021, 5, e525.	2.7	1
27	Shaping Macrophage Plasticity with Iron – Towards a New Therapeutic Approach. European Oncology and Haematology, 2018, 14, 76.	0.0	1
28	Screening out the Exposome to Improve Transfusion Quality. HemaSphere, 2021, 5, e605.	2.7	0
29	The Heme Scavenger Hemopexin Reverts Heme-Driven Pro-Inflammatory Phenotypic Switching of Macrophages in Sickle Cell Disease. Blood, 2015, 126, 2205-2205.	1.4	ο