
## R Jeroen Pasterkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7962055/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Amyotrophic lateral sclerosis. Lancet, The, 2017, 390, 2084-2098.                                                                                                                                                                                      | 13.7 | 867       |
| 2  | Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.                                                                                       | 21.4 | 494       |
| 3  | Protein aggregation in amyotrophic lateral sclerosis. Acta Neuropathologica, 2013, 125, 777-794.                                                                                                                                                       | 7.7  | 461       |
| 4  | Semaphorin 7A promotes axon outgrowth through integrins and MAPKs. Nature, 2003, 424, 398-405.                                                                                                                                                         | 27.8 | 454       |
| 5  | Haploinsufficiency leads to neurodegeneration in C9ORF72 ALS/FTD human induced motor neurons.<br>Nature Medicine, 2018, 24, 313-325.                                                                                                                   | 30.7 | 445       |
| 6  | Microglia innately develop within cerebral organoids. Nature Communications, 2018, 9, 4167.                                                                                                                                                            | 12.8 | 405       |
| 7  | Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis. Nature Genetics, 2009, 41, 1083-1087.                                                                          | 21.4 | 344       |
| 8  | MICALs, a Family of Conserved Flavoprotein Oxidoreductases, Function in Plexin-Mediated Axonal<br>Repulsion. Cell, 2002, 109, 887-900.                                                                                                                 | 28.9 | 331       |
| 9  | Expression of the Gene Encoding the Chemorepellent Semaphorin III Is Induced in the Fibroblast<br>Component of Neural Scar Tissue Formed Following Injuries of Adult But Not Neonatal CNS.<br>Molecular and Cellular Neurosciences, 1999, 13, 143-166. | 2.2  | 290       |
| 10 | Semaphorin junction: making tracks toward neural connectivity. Current Opinion in Neurobiology, 2003, 13, 79-89.                                                                                                                                       | 4.2  | 286       |
| 11 | Semaphorin 7A initiates T-cell-mediated inflammatory responses through α1β1 integrin. Nature, 2007, 446, 680-684.                                                                                                                                      | 27.8 | 273       |
| 12 | Semaphorin signaling: progress made and promises ahead. Trends in Biochemical Sciences, 2008, 33, 161-170.                                                                                                                                             | 7.5  | 269       |
| 13 | Getting neural circuits into shape with semaphorins. Nature Reviews Neuroscience, 2012, 13, 605-618.                                                                                                                                                   | 10.2 | 246       |
| 14 | <scp>C</scp> 9orf72 ablation in mice does not cause motor neuron degeneration or motor deficits.<br>Annals of Neurology, 2015, 78, 426-438.                                                                                                            | 5.3  | 225       |
| 15 | Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology. Nature Genetics, 2021, 53, 1636-1648.                                             | 21.4 | 223       |
| 16 | Axon guidance proteins in neurological disorders. Lancet Neurology, The, 2015, 14, 532-546.                                                                                                                                                            | 10.2 | 222       |
| 17 | MicroRNAs in epilepsy: pathophysiology and clinical utility. Lancet Neurology, The, 2016, 15, 1368-1376.                                                                                                                                               | 10.2 | 200       |
| 18 | Semaphorin function in neural plasticity and disease. Current Opinion in Neurobiology, 2009, 19, 263-274.                                                                                                                                              | 4.2  | 194       |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Microtubule Minus-End Binding Protein CAMSAP2 Controls Axon Specification and Dendrite Development. Neuron, 2014, 82, 1058-1073.                                                                                              | 8.1 | 193       |
| 20 | Evidence for a Role of the Chemorepellent Semaphorin III and Its Receptor Neuropilin-1 in the Regeneration of Primary Olfactory Axons. Journal of Neuroscience, 1998, 18, 9962-9976.                                          | 3.6 | 181       |
| 21 | Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cellular and Molecular Life Sciences, 2012, 69, 3127-3145.                                                       | 5.4 | 170       |
| 22 | TRIM46 Controls Neuronal Polarity and Axon Specification by Driving the Formation of Parallel Microtubule Arrays. Neuron, 2015, 88, 1208-1226.                                                                                | 8.1 | 170       |
| 23 | Angiogenin variants in Parkinson disease and amyotrophic lateral sclerosis. Annals of Neurology, 2011, 70, 964-973.                                                                                                           | 5.3 | 168       |
| 24 | Rab6, Rab8, and MICAL3 Cooperate in Controlling Docking and Fusion of Exocytotic Carriers. Current<br>Biology, 2011, 21, 967-974.                                                                                             | 3.9 | 167       |
| 25 | Semaphorin signalling during development. Development (Cambridge), 2014, 141, 3292-3297.                                                                                                                                      | 2.5 | 167       |
| 26 | CFEOM1-Associated Kinesin KIF21A Is a Cortical Microtubule Growth Inhibitor. Developmental Cell, 2013, 27, 145-160.                                                                                                           | 7.0 | 157       |
| 27 | Wnt/Planar Cell Polarity Signaling Controls the Anterior–Posterior Organization of Monoaminergic<br>Axons in the Brainstem. Journal of Neuroscience, 2010, 30, 16053-16064.                                                   | 3.6 | 148       |
| 28 | Endocannabinoids in Amygdala and Nucleus Accumbens Mediate Social Play Reward in Adolescent Rats.<br>Journal of Neuroscience, 2012, 32, 14899-14908.                                                                          | 3.6 | 144       |
| 29 | Getting connected in the dopamine system. Progress in Neurobiology, 2008, 85, 75-93.                                                                                                                                          | 5.7 | 143       |
| 30 | ALS-associated mutations in FUS disrupt the axonal distribution and function of SMN. Human<br>Molecular Genetics, 2013, 22, 3690-3704.                                                                                        | 2.9 | 130       |
| 31 | Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. European Journal of Neuroscience, 2001, 13, 457-471.        | 2.6 | 128       |
| 32 | Emerging roles for semaphorins in neural regeneration. Brain Research Reviews, 2001, 35, 36-54.                                                                                                                               | 9.0 | 127       |
| 33 | Disrupted neuronal trafficking in amyotrophic lateral sclerosis. Acta Neuropathologica, 2019, 137,<br>859-877.                                                                                                                | 7.7 | 123       |
| 34 | Anatomical distribution of the chemorepellent semaphorin III/collapsin-1 in the adult rat and human brain: Predominant expression in structures of the olfactory-hippocampal pathway and the motor system. , 1998, 52, 27-42. |     | 113       |
| 35 | Comparative interactomics analysis of different ALS-associated proteins identifies converging molecular pathways. Acta Neuropathologica, 2016, 132, 175-196.                                                                  | 7.7 | 113       |
| 36 | Circular RNAs: Novel Regulators of Neuronal Development. Frontiers in Molecular Neuroscience, 2016, 9, 74.                                                                                                                    | 2.9 | 112       |

| #  | Article                                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Semaphorins in axon regeneration: developmental guidance molecules gone wrong?. Philosophical<br>Transactions of the Royal Society B: Biological Sciences, 2006, 361, 1499-1511.                                                                          | 4.0  | 108       |
| 38 | UNC13A is a modifier of survival in amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 630.e3-630.e8.                                                                                                                                        | 3.1  | 107       |
| 39 | Semaphorin7A regulates neuroglial plasticity in the adult hypothalamic median eminence. Nature<br>Communications, 2015, 6, 6385.                                                                                                                          | 12.8 | 105       |
| 40 | Full ablation of C9orf72 in mice causes immune system-related pathology and neoplastic events but no motor neuron defects. Acta Neuropathologica, 2016, 132, 145-147.                                                                                     | 7.7  | 104       |
| 41 | Semaphorin 3F Is a Bifunctional Guidance Cue for Dopaminergic Axons and Controls Their<br>Fasciculation, Channeling, Rostral Growth, and Intracortical Targeting. Journal of Neuroscience,<br>2009, 29, 12542-12557.                                      | 3.6  | 103       |
| 42 | VCP mutations in familial and sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 837.e7-837.e13.                                                                                                                                    | 3.1  | 103       |
| 43 | Structural basis of myelin-associated glycoprotein adhesion and signalling. Nature Communications, 2016, 7, 13584.                                                                                                                                        | 12.8 | 94        |
| 44 | Dynamic Palmitoylation Targets MAP6 to the Axon to Promote Microtubule Stabilization during Neuronal Polarization. Neuron, 2017, 94, 809-825.e7.                                                                                                          | 8.1  | 94        |
| 45 | <scp><i>C9orf72</i></scp> and <scp><i>UNC13A</i></scp> are shared risk loci for amyotrophic lateral sclerosis and frontotemporal dementia: A genomeâ€wide metaâ€analysis. Annals of Neurology, 2014, 76, 120-133.                                         | 5.3  | 91        |
| 46 | Structural Basis for Plexin Activation and Regulation. Neuron, 2016, 91, 548-560.                                                                                                                                                                         | 8.1  | 89        |
| 47 | Novel antibodies reveal presynaptic localization of C9orf72 protein and reduced protein levels in C9orf72 mutation carriers. Acta Neuropathologica Communications, 2018, 6, 72.                                                                           | 5.2  | 87        |
| 48 | Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively. International Immunology, 2005, 17, 439-447.                                                                                       | 4.0  | 84        |
| 49 | dcc orchestrates the development of the prefrontal cortex during adolescence and is altered in psychiatric patients. Translational Psychiatry, 2013, 3, e338-e338.                                                                                        | 4.8  | 83        |
| 50 | RGMs: Structural Insights, Molecular Regulation, and Downstream Signaling. Trends in Cell Biology, 2017, 27, 365-378.                                                                                                                                     | 7.9  | 83        |
| 51 | Dysregulation of Semaphorin7A/β1-integrin signaling leads to defective GnRH-1 cell migration, abnormal gonadal development and altered fertility. Human Molecular Genetics, 2011, 20, 4759-4774.                                                          | 2.9  | 80        |
| 52 | High-resolution structure of the catalytic region of MICAL (molecule interacting with CasL), a<br>multidomain flavoenzyme-signaling molecule. Proceedings of the National Academy of Sciences of the<br>United States of America, 2005, 102, 16836-16841. | 7.1  | 75        |
| 53 | The HAUS Complex Is a Key Regulator of Non-centrosomal Microtubule Organization during Neuronal Development. Cell Reports, 2018, 24, 791-800.                                                                                                             | 6.4  | 75        |
| 54 | Macrophages transfer mitochondria to sensory neurons to resolve inflammatory pain. Neuron, 2022, 110, 613-626.e9.                                                                                                                                         | 8.1  | 71        |

| #  | Article                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Developmental and Activity-Dependent miRNA Expression Profiling in Primary Hippocampal Neuron<br>Cultures. PLoS ONE, 2013, 8, e74907.                                                                                           | 2.5  | 69        |
| 56 | Axon guidance proteins: Novel therapeutic targets for ALS?. Progress in Neurobiology, 2009, 88, 286-301.                                                                                                                        | 5.7  | 68        |
| 57 | A double hit implicates DIAPH3 as an autism risk gene. Molecular Psychiatry, 2011, 16, 442-451.                                                                                                                                 | 7.9  | 68        |
| 58 | Expression patterns of semaphorin7A and plexinC1 during rat neural development suggest roles in axon guidance and neuronal migration. BMC Developmental Biology, 2007, 7, 98.                                                   | 2.1  | 66        |
| 59 | FUS Mutations in Familial Amyotrophic Lateral Sclerosis in the Netherlands. Archives of Neurology, 2010, 67, 224-30.                                                                                                            | 4.5  | 66        |
| 60 | MICAL flavoprotein monooxygenases: Expression during neural development and following spinal cord injuries in the rat. Molecular and Cellular Neurosciences, 2006, 31, 52-69.                                                   | 2.2  | 63        |
| 61 | Potent Anti-seizure Effects of Locked Nucleic Acid Antagomirs Targeting miR-134 in Multiple Mouse and<br>Rat Models of Epilepsy. Molecular Therapy - Nucleic Acids, 2017, 6, 45-56.                                             | 5.1  | 62        |
| 62 | Best practice standards for circular RNA research. Nature Methods, 2022, 19, 1208-1220.                                                                                                                                         | 19.0 | 58        |
| 63 | FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Reports, 2017, 9, 1530-1545.                                                                                              | 4.8  | 56        |
| 64 | MICAL-1 Is a Negative Regulator of MST-NDR Kinase Signaling and Apoptosis. Molecular and Cellular Biology, 2011, 31, 3603-3615.                                                                                                 | 2.3  | 54        |
| 65 | Autoantibody pathogenicity in a multifocal motor neuropathy induced pluripotent stem cell–derived model. Annals of Neurology, 2016, 80, 71-88.                                                                                  | 5.3  | 53        |
| 66 | S-nitrosylation of HDAC2 regulates the expression of the chromatin-remodeling factor Brm during radial neuron migration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3113-3118. | 7.1  | 52        |
| 67 | Structure of the Repulsive Guidance Molecule (RGM)–Neogenin Signaling Hub. Science, 2013, 341, 77-80.                                                                                                                           | 12.6 | 52        |
| 68 | Mutant FUS and ELAVL4 (HuD) Aberrant Crosstalk in Amyotrophic Lateral Sclerosis. Cell Reports, 2019, 27, 3818-3831.e5.                                                                                                          | 6.4  | 51        |
| 69 | Semaphorin signaling: molecular switches at the midline. Trends in Cell Biology, 2010, 20, 568-576.                                                                                                                             | 7.9  | 49        |
| 70 | NIPA1 polyalanine repeat expansions are associated with amyotrophic lateral sclerosis. Human<br>Molecular Genetics, 2012, 21, 2497-2502.                                                                                        | 2.9  | 49        |
| 71 | The intracellular redox protein MICAL-1 regulates the development of hippocampal mossy fibre connections. Nature Communications, 2014, 5, 4317.                                                                                 | 12.8 | 49        |
| 72 | DeActs: genetically encoded tools for perturbing the actin cytoskeleton in single cells. Nature<br>Methods, 2017, 14, 479-482.                                                                                                  | 19.0 | 49        |

| #  | Article                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | MeCP2 deficiency disrupts axonal guidance, fasciculation, and targeting by altering Semaphorin 3F function. Molecular and Cellular Neurosciences, 2009, 42, 243-254.                                                                             | 2.2  | 48        |
| 74 | Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Scientific Reports, 2017, 7, 8089.                                                          | 3.3  | 47        |
| 75 | MICALs in control of the cytoskeleton, exocytosis, and cell death. Cellular and Molecular Life Sciences, 2011, 68, 4033-4044.                                                                                                                    | 5.4  | 46        |
| 76 | Subdomain-Mediated Axon-Axon Signaling and Chemoattraction Cooperate to Regulate Afferent<br>Innervation of the Lateral Habenula. Neuron, 2014, 83, 372-387.                                                                                     | 8.1  | 46        |
| 77 | Lrig2 Negatively Regulates Ectodomain Shedding of Axon Guidance Receptors by ADAM Proteases.<br>Developmental Cell, 2015, 35, 537-552.                                                                                                           | 7.0  | 46        |
| 78 | An Image-Based miRNA Screen Identifies miRNA-135s As Regulators of CNS Axon Growth and<br>Regeneration by Targeting Krüppel-like Factor 4. Journal of Neuroscience, 2018, 38, 613-630.                                                           | 3.6  | 45        |
| 79 | TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 2019, 8, .                                                                                                                                         | 6.0  | 45        |
| 80 | A role for Bicaudal-D2 in radial cerebellar granule cell migration. Nature Communications, 2014, 5, 3411.                                                                                                                                        | 12.8 | 44        |
| 81 | Neuronal Subset-Specific Migration and Axonal Wiring Mechanisms in the Developing Midbrain<br>Dopamine System. Frontiers in Neuroanatomy, 2017, 11, 55.                                                                                          | 1.7  | 43        |
| 82 | A systems approach delivers a functional microRNA catalog and expanded targets for seizure<br>suppression in temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United<br>States of America, 2020, 117, 15977-15988. | 7.1  | 41        |
| 83 | Dorsal Root Ganglia Macrophages Maintain Osteoarthritis Pain. Journal of Neuroscience, 2021, 41,<br>8249-8261.                                                                                                                                   | 3.6  | 41        |
| 84 | Chapter 13 Role for semaphorin III and its receptor neuropilin-1 in neuronal regeneration and scar formation?. Progress in Brain Research, 1998, 117, 151-170.                                                                                   | 1.4  | 39        |
| 85 | Semaphorin7A and its receptors: Pleiotropic regulators of immune cell function, bone homeostasis, and neural development. Seminars in Cell and Developmental Biology, 2013, 24, 129-138.                                                         | 5.0  | 38        |
| 86 | Detailed Analysis of the Genetic and Epigenetic Signatures of iPSC-Derived Mesodiencephalic<br>Dopaminergic Neurons. Stem Cell Reports, 2014, 2, 520-533.                                                                                        | 4.8  | 38        |
| 87 | Genome-wide study of DNA methylation shows alterations in metabolic, inflammatory, and cholesterol pathways in ALS. Science Translational Medicine, 2022, 14, eabj0264.                                                                          | 12.4 | 38        |
| 88 | Genome wide expression profiling of the mesodiencephalic region identifies novel factors involved in early and late dopaminergic development. Biology Open, 2012, 1, 693-704.                                                                    | 1.2  | 37        |
| 89 | Towards Advanced iPSC-based Drug Development for Neurodegenerative Disease. Trends in Molecular<br>Medicine, 2021, 27, 263-279.                                                                                                                  | 6.7  | 37        |
| 90 | Semaphorin 7A Promotes Chemokine-Driven Dendritic Cell Migration. Journal of Immunology, 2016, 196,<br>459-468.                                                                                                                                  | 0.8  | 35        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Taking a risk: a therapeutic focus on ataxin-2 in amyotrophic lateral sclerosis?. Trends in Molecular<br>Medicine, 2014, 20, 25-35.                                                                       | 6.7  | 33        |
| 92  | <i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.                                            | 3.3  | 33        |
| 93  | Adenoviral Vector-Mediated Gene Delivery to Injured Rat Peripheral Nerve. Journal of Neurotrauma,<br>1998, 15, 387-397.                                                                                   | 3.4  | 32        |
| 94  | shRNA-induced saturation of the microRNA pathway in the rat brain. Gene Therapy, 2014, 21, 205-211.                                                                                                       | 4.5  | 31        |
| 95  | R-Ras fills another GAP in semaphorin signalling. Trends in Cell Biology, 2005, 15, 61-64.                                                                                                                | 7.9  | 30        |
| 96  | Frizzled3 Controls Axonal Polarity and Intermediate Target Entry during Striatal Pathway<br>Development. Journal of Neuroscience, 2015, 35, 14205-14219.                                                  | 3.6  | 30        |
| 97  | A directional 3D neurite outgrowth model for studying motor axon biology and disease. Scientific Reports, 2021, 11, 2080.                                                                                 | 3.3  | 30        |
| 98  | Ryk, a Receptor Regulating Wnt5a-Mediated Neurogenesis and Axon Morphogenesis of Ventral<br>Midbrain Dopaminergic Neurons. Stem Cells and Development, 2013, 22, 2132-2144.                               | 2.1  | 28        |
| 99  | Antagonizing Increased <i>miR-135a</i> Levels at the Chronic Stage of Experimental TLE Reduces<br>Spontaneous Recurrent Seizures. Journal of Neuroscience, 2019, 39, 5064-5079.                           | 3.6  | 28        |
| 100 | Kinetic and spectroscopic characterization of the putative monooxygenase domain of human MICAL-1.<br>Archives of Biochemistry and Biophysics, 2011, 515, 1-13.                                            | 3.0  | 26        |
| 101 | Stage-specific functions of Semaphorin7A during adult hippocampal neurogenesis rely on distinct receptors. Nature Communications, 2017, 8, 14666.                                                         | 12.8 | 26        |
| 102 | Repulsive Guidance Molecule a (RGMa) Induces Neuropathological and Behavioral Changes That<br>Closely Resemble Parkinson's Disease. Journal of Neuroscience, 2017, 37, 9361-9379.                         | 3.6  | 26        |
| 103 | How the COVID-19 pandemic highlights the necessity of animal research. Current Biology, 2020, 30, R1014-R1018.                                                                                            | 3.9  | 26        |
| 104 | Neuromuscular junctionâ€onâ€aâ€chip: ALS disease modeling and readâ€out development in microfluidic<br>devices. Journal of Neurochemistry, 2021, 157, 393-412.                                            | 3.9  | 26        |
| 105 | MICAL Flavoprotein Monooxygenases: Structure, Function and Role in Semaphorin Signaling. Advances in Experimental Medicine and Biology, 2007, 600, 38-51.                                                 | 1.6  | 26        |
| 106 | Proteomic profiling of the spinal cord in ALS: decreased ATP5D levels suggest synaptic dysfunction in ALS pathogenesis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2017, 18, 210-220. | 1.7  | 25        |
| 107 | Transcriptional repression of Plxnc1 by Lmx1a and Lmx1b directs topographic dopaminergic circuit formation. Nature Communications, 2017, 8, 933.                                                          | 12.8 | 25        |
| 108 | Molecular dissection of germline chromothripsis in a developmental context using patient-derived<br>iPS cells. Genome Medicine, 2017, 9, 9.                                                               | 8.2  | 25        |

| #   | Article                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Mutations in <i>MICALâ€l </i> cause autosomalâ€dominant lateral temporal epilepsy. Annals of Neurology,<br>2018, 83, 483-493.                                                                        | 5.3  | 25        |
| 110 | Opposite-sex attraction in male mice requires testosterone-dependent regulation of adult olfactory bulb neurogenesis. Scientific Reports, 2016, 6, 36063.                                            | 3.3  | 24        |
| 111 | SnapShot: Axon Guidance. Cell, 2013, 153, 494-494.e2.                                                                                                                                                | 28.9 | 23        |
| 112 | Remotely Produced and Axon-Derived Netrin-1 Instructs GABAergic Neuron Migration and Dopaminergic Substantia Nigra Development. Neuron, 2020, 107, 684-702.e9.                                       | 8.1  | 23        |
| 113 | Spatiotemporal Expression of Repulsive Guidance Molecules (RGMs) and Their Receptor Neogenin in the Mouse Brain. PLoS ONE, 2013, 8, e55828.                                                          | 2.5  | 23        |
| 114 | Long non oding RNAs in motor neuron development and disease. Journal of Neurochemistry, 2021, 156,<br>777-801.                                                                                       | 3.9  | 22        |
| 115 | The perinatal ontogeny of estrogen receptor-immunoreactivity in the developing male and female rat hypothalamus. Developmental Brain Research, 1996, 91, 300-303.                                    | 1.7  | 20        |
| 116 | Chapter 12 Semaphorin III: Role in neuronal development and structural plasticity. Progress in Brain Research, 1998, 117, 133-149.                                                                   | 1.4  | 20        |
| 117 | Large-scale screening in sporadic amyotrophic lateral sclerosis identifies genetic modifiers in C9orf72 repeat carriers. Neurobiology of Aging, 2016, 39, 220.e9-220.e15.                            | 3.1  | 20        |
| 118 | Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell, 2021, 184, 2103-2120.e31.                                                                              | 28.9 | 20        |
| 119 | Systemic delivery of antagomirs during blood-brain barrier disruption is disease-modifying in experimental epilepsy. Molecular Therapy, 2021, 29, 2041-2052.                                         | 8.2  | 20        |
| 120 | Single-cell profiling of human subventricular zone progenitors identifies SFRP1 as a target to re-activate progenitors. Nature Communications, 2022, 13, 1036.                                       | 12.8 | 19        |
| 121 | SnapShot: Axon Guidance II. Cell, 2013, 153, 722-722.e1.                                                                                                                                             | 28.9 | 18        |
| 122 | Identification of <i>Srp9</i> as a febrile seizure susceptibility gene. Annals of Clinical and Translational Neurology, 2014, 1, 239-250.                                                            | 3.7  | 18        |
| 123 | The molecular mechanisms controlling morphogenesis and wiring of the habenula. Pharmacology<br>Biochemistry and Behavior, 2017, 162, 29-37.                                                          | 2.9  | 18        |
| 124 | Metalloprotease-mediated cleavage of PlexinD1 and its sequestration to actin rods in the motoneuron disease spinal muscular atrophy (SMA). Human Molecular Genetics, 2017, 26, 3946-3959.            | 2.9  | 17        |
| 125 | Structural basis of semaphorinâ€plexin <i>cis</i> interaction. EMBO Journal, 2020, 39, e102926.                                                                                                      | 7.8  | 17        |
| 126 | The mouse brain after foot shock in four dimensions: Temporal dynamics at a single-cell resolution.<br>Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, . | 7.1  | 17        |

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Screening for rare variants in the coding region of ALS-associated genes at 9p21.2 and 19p13.3.<br>Neurobiology of Aging, 2013, 34, 1518.e5-1518.e7.                                                      | 3.1  | 16        |
| 128 | Cortical Morphogenesis during Embryonic Development Is Regulated by miR-34c and miR-204. Frontiers in Molecular Neuroscience, 2017, 10, 31.                                                               | 2.9  | 15        |
| 129 | Advances in Central Nervous System Organoids: A Focus on Organoid-Based Models for Motor<br>Neuron Disease. Tissue Engineering - Part C: Methods, 2021, 27, 213-224.                                      | 2.1  | 15        |
| 130 | Deciphering the Proteome Dynamics during Development of Neurons Derived from Induced Pluripotent Stem Cells. Journal of Proteome Research, 2020, 19, 2391-2403.                                           | 3.7  | 14        |
| 131 | Enrichment of Circular RNA Expression Deregulation at the Transition to Recurrent Spontaneous<br>Seizures in Experimental Temporal Lobe Epilepsy. Frontiers in Genetics, 2021, 12, 627907.                | 2.3  | 13        |
| 132 | Distinct spatial arrangements of ACE2 and TMPRSS2 expression in Syrian hamster lung lobes dictates SARS-CoV-2 infection patterns. PLoS Pathogens, 2022, 18, e1010340.                                     | 4.7  | 13        |
| 133 | Recent advances in inter-cellular interactions during neural circuit assembly. Current Opinion in Neurobiology, 2021, 69, 25-32.                                                                          | 4.2  | 12        |
| 134 | <i>unc5c</i> haploinsufficient phenotype: striking similarities with the <i>dcc</i> haploinsufficiency<br>model. European Journal of Neuroscience, 2013, 38, 2853-2863.                                   | 2.6  | 11        |
| 135 | Dissection and Culture of Mouse Dopaminergic and Striatal Explants in Three-Dimensional Collagen<br>Matrix Assays. Journal of Visualized Experiments, 2012, , .                                           | 0.3  | 10        |
| 136 | Commentary: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Frontiers in Molecular Neuroscience, 2017, 10, 412.                                                  | 2.9  | 10        |
| 137 | HR23B pathology preferentially co-localizes with p62, pTDP-43 and poly-GA in C9ORF72-linked frontotemporal dementia and amyotrophic lateral sclerosis. Acta Neuropathologica Communications, 2019, 7, 39. | 5.2  | 9         |
| 138 | Pharmacological validation of TDO as a target for Parkinson's disease. FEBS Journal, 2021, 288, 4311-4331.                                                                                                | 4.7  | 9         |
| 139 | Analysis of the circRNA and T-UCR populations identifies convergent pathways in mouse and human models of Rett syndrome. Molecular Therapy - Nucleic Acids, 2022, 27, 621-644.                            | 5.1  | 9         |
| 140 | Spinal Muscular Atrophy Patient iPSC-Derived Motor Neurons Display Altered Proteomes at Early<br>Stages of Differentiation. ACS Omega, 2021, 6, 35375-35388.                                              | 3.5  | 9         |
| 141 | CGG-repeat expansion in FMR1 is not associated with amyotrophic lateral sclerosis. Neurobiology of Aging, 2012, 33, 1852.e1-1852.e3.                                                                      | 3.1  | 8         |
| 142 | Nolz1 expression is required in dopaminergic axon guidance and striatal innervation. Nature Communications, 2020, 11, 3111.                                                                               | 12.8 | 8         |
| 143 | Axon Guidance in the Dopamine System. Advances in Experimental Medicine and Biology, 2009, 651, 91-100.                                                                                                   | 1.6  | 7         |
| 144 | Sensory Axon Growth Requires Spatiotemporal Integration of CaSR and TrkB Signaling. Journal of Neuroscience, 2019, 39, 5842-5860.                                                                         | 3.6  | 6         |

| #   | Article                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Expression of Circ_Satb1 Is Decreased in Mesial Temporal Lobe Epilepsy and Regulates Dendritic Spine<br>Morphology. Frontiers in Molecular Neuroscience, 2022, 15, 832133.     | 2.9  | 6         |
| 146 | Anti-C2 Antibody ARGX-117 Inhibits Complement in a Disease Model for Multifocal Motor Neuropathy.<br>Neurology: Neuroimmunology and NeuroInflammation, 2022, 9, .              | 6.0  | 5         |
| 147 | Molecular signatures and cellular diversity during mouse habenula development. Cell Reports, 2022,<br>40, 111029.                                                              | 6.4  | 5         |
| 148 | Axon guidance: semaphorin/neuropilin/plexin signaling. , 2020, , 109-122.                                                                                                      |      | 3         |
| 149 | Protocol for tissue clearing and 3D analysis of dopamine neurons in the developing mouse midbrain.<br>STAR Protocols, 2021, 2, 100669.                                         | 1.2  | 3         |
| 150 | The alteration of glucocorticoid receptor-immunoreactivity in the rat forebrain following short-term and long-term adrenalectomy. Brain Research, 1996, 729, 216-222.          | 2.2  | 3         |
| 151 | Development and engineering of dopamine neurons. Preface. Advances in Experimental Medicine and<br>Biology, 2009, 651, v-vi.                                                   | 1.6  | 3         |
| 152 | Exposure to the Amino Acids Histidine, Lysine, and Threonine Reduces mTOR Activity and Affects Neurodevelopment in a Human Cerebral Organoid Model. Nutrients, 2022, 14, 2175. | 4.1  | 2         |
| 153 | Neuropeptide delivery to the brain: a von Willebrand factor signal peptide to direct neuropeptide secretion. BMC Neuroscience, 2010, 11, 94.                                   | 1.9  | 1         |
| 154 | Axons Navigate Noise with 190RhoGAP. Neuron, 2019, 102, 512-514.                                                                                                               | 8.1  | 0         |
| 155 | Microglial transcriptomics meets genetics: new disease leads. Nature Reviews Neurology, 2022, 18,                                                                              | 10.1 | 0         |