
Noam R Izenberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7961129/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Triton Haze Analogs: The Role of Carbon Monoxide in Haze Formation. Journal of Geophysical Research E: Planets, 2022, 127, .	3.6	4
2	Parker Solar Probe Imaging of the Night Side of Venus. Geophysical Research Letters, 2022, 49, .	4.0	12
3	Hierarchical Bayesian Atmospheric Retrieval Modeling for Population Studies of Exoplanet Atmospheres: A Case Study on the Habitable Zone. Astronomical Journal, 2022, 163, 140.	4.7	9
4	Science Goals and Mission Concept for a Landed Investigation of Mercury. Planetary Science Journal, 2022, 3, 68.	3.6	2
5	Revealing the Mysteries of Venus: The DAVINCI Mission. Planetary Science Journal, 2022, 3, 117.	3.6	62
6	The Fundamental Connections between the Solar System and Exoplanetary Science. Journal of Geophysical Research E: Planets, 2021, 126, e2020JE006643.	3.6	15
7	Hopper Missions to Triton and Pluto using a Vehicle with In-Situ Refueling. , 2021, 53, .		0
8	Looking Back is Looking Forward: The Need for Retrospective Solar System Observations in Advance of Exoplanet Retrievals. , 2021, 53, .		1
9	The Venus Life Equation. , 2021, 53, .		Ο
10	Venus Surface Platforms. , 2021, 53, .		1
11	Habitability Models for Planetary Sciences. , 2021, 53, .		3
12	In Situ Exploration of Venusâ \in M Clouds by Dynamic Soaring. , 2021, 53, .		0
13	Future Exploration of Venus: International Coordination and Collaborations. , 2021, 53, .		Ο
14	Venus Exploration in the New Human Spaceflight Age. Acta Astronautica, 2021, 180, 100-104.	3.2	4
15	Transmission Spectroscopy of the Earth–Sun System to Inform the Search for Extrasolar Life. Planetary Science Journal, 2021, 2, 140.	3.6	8
16	Habitability Models for Astrobiology. Astrobiology, 2021, 21, 1017-1027.	3.0	13
17	Retrieving Exoplanet Atmospheres Using Planetary Infrared Excess: Prospects for the Night Side of WASP-43 b and Other Hot Jupiters. Astrophysical Journal Letters, 2021, 921, L4.	8.3	5
18	A Geologically Robust Procedure for Observing Rocky Exoplanets to Ensure that Detection of Atmospheric Oxygen Is a Modern Earth-like Biosignature. Astrophysical Journal Letters, 2020, 898, L17.	8.3	5

#	Article	IF	CITATIONS
19	Analysis of the MESSENGER MASCS photometric targets part II: Photometric variability between geomorphological units. Icarus, 2019, 319, 140-246.	2.5	3
20	Analysis of the MESSENGER MASCS photometric targets part I: Photometric standardization for examining spectral variability across Mercury's surface. Icarus, 2019, 319, 247-263.	2.5	6
21	Spectral Analyses of Mercury. , 2019, , 351-367.		0
22	How dielectric breakdown may contribute to the global weathering of regolith on the moon. Icarus, 2019, 319, 785-794.	2.5	14
23	Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems. Ecological Applications, 2018, 28, 749-760.	3.8	116
24	Spectral Reflectance Constraints on the Composition and Evolution of Mercury's Surface. , 2018, , 191-216.		9
25	Radiative transfer modeling of MESSENGER VIRS spectra: Detection and mapping of submicroscopic iron and carbon. Icarus, 2017, 293, 206-217.	2.5	24
26	Evidence from MESSENGER for sulfur―and carbonâ€driven explosive volcanism on Mercury. Geophysical Research Letters, 2016, 43, 3653-3661.	4.0	57
27	A spaceborne visible-NIR hyperspectral imager for coastal phenology. Proceedings of SPIE, 2016, , .	0.8	1
28	Mineralogical indicators of Mercury's hollows composition in MESSENGER color observations. Geophysical Research Letters, 2016, 43, 1450-1456.	4.0	42
29	Shallow crustal composition of Mercury as revealed by spectral properties and geological units of two impact craters. Planetary and Space Science, 2015, 119, 250-263.	1.7	11
30	Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus, 2015, 254, 287-305.	2.5	95
31	Visible to near-infrared hyperspectral measurements of mercury: Challenges for deciphering surface mineralogy. , 2014, , .		2
32	The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus, 2014, 228, 364-374.	2.5	82
33	Mercury's Weather-Beaten Surface: Understanding Mercury in the Context of Lunar and Asteroidal Space Weathering Studies. Space Science Reviews, 2014, 181, 121-214.	8.1	108
34	Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. Journal of Geophysical Research E: Planets, 2014, 119, 635-658.	3.6	79
35	Hot Times at Mercury: Mission Operations for the Mercury Atmospheric and Surface Composition Spectrometer on MESSENGER. , 2012, , .		1
36	Hollows on Mercury: MESSENGER Evidence for Geologically Recent Volatile-Related Activity. Science, 2011, 333, 1856-1859.	12.6	136

#	Article	IF	CITATIONS
37	Prometheus's Challenge: Scheduling MASCS Observations Using SciBox for Orbital Operations at Mercury. , 2010, , .		0
38	Whole-disk spectrophotometric properties of Mercury: Synthesis of MESSENGER and ground-based observations. Icarus, 2010, 209, 101-124.	2.5	35
39	A comparison of the ultraviolet to near-infrared spectral properties of Mercury and the Moon as observed by MESSENGER. Icarus, 2010, 209, 179-194.	2.5	26
40	Exposure of spectrally distinct material by impact craters on Mercury: Implications for global stratigraphy. Icarus, 2010, 209, 210-223.	2.5	82
41	Mercury's Complex Exosphere: Results from MESSENGER's Third Flyby. Science, 2010, 329, 672-675.	12.6	70
42	Astrobiological molecularly imprinted polymer sensors. Planetary and Space Science, 2009, 57, 846-853.	1.7	13
43	MESSENGER Observations of Mercury's Exosphere: Detection of Magnesium and Distribution of Constituents. Science, 2009, 324, 610-613.	12.6	83
44	Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature, 2008, 454, 305-309.	27.8	630
45	Mercury's Exosphere: Observations During MESSENGER's First Mercury Flyby. Science, 2008, 321, 92-94.	12.6	77
46	Spectroscopic Observations of Mercury's Surface Reflectance During MESSENGER's First Mercury Flyby. Science, 2008, 321, 62-65.	12.6	94
47	Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO). Journal of Geophysical Research, 2007, 112, .	3.3	796
48	Compact reconnaissance imaging spectrometer for Mars (CRISM): characterization results for instrument and focal plane subsystems. , 2004, , .		2
49	The CONTOUR remote imager and spectrometer (CRISP). , 2004, 5163, 84.		0
50	CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) on MRO (Mars Reconnaissance) Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf 5
51	CONTOUR forward imager on the Comet Nucleus Tour mission. , 2004, , .		1
52	Selected configuration tradeoffs of contour optical instruments. Acta Astronautica, 2003, 52, 111-116.	3.2	2
53	The CONTOUR remote imager and spectrograph. Acta Astronautica, 2003, 52, 427-431.	3.2	0
54	Spectral properties and geologic processes on Eros from combined NEAR NIS and MSI data sets.	1.6	33

Meteoritics and Planetary Science, 2003, 38, 1053-1077.

#	Article	IF	CITATIONS
55	Ponded deposits on asteroid 433 Eros. Meteoritics and Planetary Science, 2002, 37, 1095-1105.	1.6	74
56	Impact History of Eros: Craters and Boulders. Icarus, 2002, 155, 104-118.	2.5	119
57	Inflight Calibration of the NEAR Multispectral Imager. Icarus, 2002, 155, 229-243.	2.5	20
58	Detection of Temperature-Dependent Spectral Variation on the Asteroid Eros and New Evidence for the Presence of an Olivine-Rich Silicate Assemblage. Icarus, 2002, 155, 181-188.	2.5	20
59	NEAR Infrared Spectrometer Photometry of Asteroid 433 Eros. Icarus, 2002, 155, 189-204.	2.5	113
60	Near-IR Reflectance Spectroscopy of 433 Eros from the NIS Instrument on the NEAR Mission. Icarus, 2002, 155, 119-144.	2.5	70
61	Eros: Shape, Topography, and Slope Processes. Icarus, 2002, 155, 18-37.	2.5	154
62	Color Variations on Eros from NEAR Multispectral Imaging. Icarus, 2002, 155, 145-168.	2.5	78
63	Space weathering on Eros: Constraints from albedo and spectral measurements of Psyche crater. Meteoritics and Planetary Science, 2001, 36, 1617-1637.	1.6	89
64	The composition of 433 Eros: A mineralogical—chemical synthesis. Meteoritics and Planetary Science, 2001, 36, 1661-1672.	1.6	93
65	Mineralogical interpretation of reflectance spectra of Eros from NEAR nearâ€infrared spectrometer low phase flyby. Meteoritics and Planetary Science, 2001, 36, 1711-1726.	1.6	45
66	The MESSENGER mission to Mercury: scientific payload. Planetary and Space Science, 2001, 49, 1467-1479.	1.7	118
67	The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros. Nature, 2001, 413, 390-393.	27.8	190
68	Imaging of Small-Scale Features on 433 Eros from NEAR: Evidence for a Complex Regolith. Science, 2001, 292, 484-488.	12.6	147
69	In-Flight Calibration of the Near Earth Asteroid Rendezvous Mission's Near Infrared Spectrometer I. Initial Calibrations. Icarus, 2000, 148, 550-571.	2.5	11
70	NEAR at Eros: Imaging and Spectral Results. Science, 2000, 289, 2088-2097.	12.6	250
71	Inflight Calibration of the NEAR Multispectral Imager. Icarus, 1999, 140, 66-91.	2.5	35
72	NEAR Encounter with Asteroid 253 Mathilde: Overview. Icarus, 1999, 140, 3-16.	2.5	121

#	Article	IF	CITATIONS
73	Imaging of Asteroid 433 Eros During NEAR's Flyby Reconnaissance. Science, 1999, 285, 562-564.	12.6	61
74	NEAR swings by Earth en route to eros. Eos, 1998, 79, 289-289.	0.1	4
75	NEAR's Flyby of 253 Mathilde: Images of a C Asteroid. Science, 1997, 278, 2109-2114.	12.6	185
76	Erosional and depositional patterns associated with the 1993 Missouri River floods inferred from SIR-C and TOPSAR radar data. Journal of Geophysical Research, 1996, 101, 23149-23167.	3.3	40
77	Basalt Oxidation and the Formation of Hematite on the Surface of Venus. Icarus, 1995, 118, 373-383.	2.5	33
78	Ejecta correlations with spatial crater density and Venus resurfacing history. Geophysical Research Letters, 1995, 22, 1517-1520.	4.0	37
79	Comment on "The global resurfacing of Venus―by R. G. Strom, G. G. Schaber, and D. D. Dawson. Journal of Geophysical Research, 1995, 100, 23355.	3.3	11
80	Microwave Signatures and Surface Properties of Ovda Regio and Surroundings, Venus. Icarus, 1994, 112, 171-186.	2.5	26
81	Impact crater degradation on venusian plains. Geophysical Research Letters, 1994, 21, 289-292.	4.0	76
82	Surface modification of Venus as inferred from Magellan observations of plains. Journal of Geophysical Research, 1992, 97, 13303-13317.	3.3	114
83	Impact craters and Venus resurfacing history. Journal of Geophysical Research, 1992, 97, 15923-15948.	3.3	303