List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960624/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Title is missing!. Plant and Soil, 1997, 194, 99-114.	3.7	289
2	A New Species of <i>Devosia</i> That Forms a Unique Nitrogen-Fixing Root-Nodule Symbiosis with the Aquatic Legume <i>Neptunia natans</i> (L.f.) Druce. Applied and Environmental Microbiology, 2002, 68, 5217-5222.	3.1	277
3	Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biology and Biochemistry, 2001, 33, 103-110.	8.8	256
4	Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Applied and Environmental Microbiology, 2005, 71, 1318-1327.	3.1	219
5	Description of Devosia neptuniae sp. nov. that Nodulates and Fixes Nitrogen in Symbiosis with Neptunia natans, an Aquatic Legume from India. Systematic and Applied Microbiology, 2003, 26, 47-53.	2.8	170
6	Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans. PLoS ONE, 2012, 7, e38122.	2.5	155
7	Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB) Tj ETQq1	1 0178431	l4 r g∄ ∏ /Overl
8	2000, 50, 24042450. Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Applied and Environmental Microbiology, 1992, 58, 1816-1822.	3.1	148
9	Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1985-1989.	1.7	143
10	Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 784-788.	1.7	138
11	Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1929-1934.	1.7	127
12	Physiological and biochemical characterization of Trichoderma harzianum, a biological control agent against soilborne fungal plant pathogens. Applied and Environmental Microbiology, 1997, 63, 3189-3198.	3.1	126
13	<i>Rhizobium</i> cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7064-7069.	7.1	119
14	The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Functional Plant Biology, 2001, 28, 845.	2.1	116
15	Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1271-1275.	1.7	115
16	Plants Probiotics as a Tool to Produce Highly Functional Fruits: The Case of Phyllobacterium and Vitamin C in Strawberries. PLoS ONE, 2015, 10, e0122281.	2.5	106
17	Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant and Soil, 2006, 287, 23-33.	3.7	104
18	Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina) International Journal of Systematic and Evolutionary Microbiology, 2001, 51, 1011-1021.	1.7	100

#	Article	IF	CITATIONS
19	Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1286-1290.	1.7	99
20	Use of <i>Rhizobium leguminosarum</i> as a potential biofertilizer for <i>Lactuca sativa</i> and <i>Daucus carota</i> crops. Journal of Plant Nutrition and Soil Science, 2013, 176, 876-882.	1.9	99
21	Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Letters in Applied Microbiology, 2007, 44, 181-187.	2.2	97
22	MALDI-TOF Mass Spectrometry Is a Fast and Reliable Platform for Identification and Ecological Studies of Species from Family Rhizobiaceae. PLoS ONE, 2011, 6, e20223.	2.5	94
23	Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Letters in Applied Microbiology, 2007, 44, 412-418.	2.2	92
24	Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 2067-2072.	1.7	90
25	Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 99-103.	1.7	88
26	A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis, 2001, 22, 1086-1089.	2.4	86
27	Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microbial Cell Factories, 2012, 11, 125.	4.0	86
28	The unique root-nodule symbiosis between Rhizobium and the aquatic legume, Neptunia natans (L. f.) Druce. Planta, 1995, 196, 311-320.	3.2	82
29	Growth promotion of common bean (Phaseolus vulgaris L.) by a strain of Burkholderia cepacia under growth chamber conditions. Soil Biology and Biochemistry, 2001, 33, 1927-1935.	8.8	80
30	Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 844-848.	1.7	80
31	The Coexistence of Symbiosis and Pathogenicity-Determining Genes in Rhizobium rhizogenes Strains Enables Them to Induce Nodules and Tumors or Hairy Roots in Plants. Molecular Plant-Microbe Interactions, 2005, 18, 1325-1332.	2.6	71
32	Rhizobium sullae sp. nov. (formerly 'Rhizobium hedysari'), the root-nodule microsymbiont of Hedysarum coronarium L. International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1267-1276.	1.7	70
33	Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1855-1859.	1.7	67
34	Micromonospora mirobrigensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 877-880.	1.7	66
35	Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 405-408.	1.7	65
36	Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 847-850.	1.7	59

#	Article	IF	CITATIONS
37	Characterization of Rhizobial Isolates of Phaseolus vulgaris by Staircase Electrophoresis of Low-Molecular-Weight RNA. Applied and Environmental Microbiology, 2001, 67, 1008-1010.	3.1	54
38	Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 743-746.	1.7	54
39	Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1213-1219.	1.7	52
40	Defective Infection and Nodulation of Clovers by Exopolysaccharide Mutants of Rhizobium leguminosarum bv. trifolii. Functional Plant Biology, 1996, 23, 285.	2.1	51
41	Pseudomonas coleopterorum sp. nov., a cellulase-producing bacterium isolated from the bark beetle Hylesinus fraxini. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2852-2858.	1.7	50
42	Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Scientific Reports, 2018, 8, 295.	3.3	50
43	The analysis of core and symbiotic genes of rhizobia nodulating Vicia from different continents reveals their common phylogenetic origin and suggests the distribution of Rhizobium leguminosarum strains together with Vicia seeds. Archives of Microbiology, 2009, 191, 659-668.	2.2	49
44	Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie Van Leeuwenhoek, 2010, 97, 363-376.	1.7	48
45	Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Systematic and Applied Microbiology, 2010, 33, 247-251.	2.8	48
46	Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1703-1708.	1.7	47
47	Identification of Fast-Growing Rhizobia Nodulating Tropical Legumes from Puerto Rico as Rhizobium gallicum and Rhizobium tropici. Systematic and Applied Microbiology, 2004, 27, 469-477.	2.8	46
48	Martelella mediterranea gen. nov., sp. nov., a novel α-proteobacterium isolated from a subterranean saline lake. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 955-959.	1.7	46
49	Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2777-2781.	1.7	46
50	Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 533-536.	1.7	43
51	An effective, rapid and simple method for total RNA extraction from bacteria and yeast. Journal of Microbiological Methods, 2001, 47, 59-63.	1.6	42
52	Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium–legume symbiosis. Canadian Journal of Microbiology, 2001, 47, 475-487.	1.7	42
53	Title is missing!. European Journal of Plant Pathology, 2002, 108, 179-184.	1.7	42
54	Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1987-1990.	1.7	40

#	Article	IF	CITATIONS
55	Genetic characterization of fast-growing rhizobia able to nodulate <i>Prosopis alba</i> in North Spain. FEMS Microbiology Letters, 2007, 277, 210-216.	1.8	40
56	Rhizobia from Lanzarote, the Canary Islands, That Nodulate <i>Phaseolus vulgaris</i> Have Characteristics in Common with <i>Sinorhizobium meliloti</i> Isolates from Mainland Spain. Applied and Environmental Microbiology, 2009, 75, 2354-2359.	3.1	40
57	Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 557-561.	1.7	38
58	Nodulation in Dimorphandra wilsonii Rizz. (Caesalpinioideae), a Threatened Species Native to the Brazilian Cerrado. PLoS ONE, 2012, 7, e49520.	2.5	38
59	Erosion of root epidermal cell walls by <i>Rhizobium</i> polysaccharide-degrading enzymes as related to primary host infection in the <i>Rhizobium</i> –legume symbiosis. Canadian Journal of Microbiology, 2001, 47, 475-487.	1.7	38
60	Cell-bound cellulase and polygalacturonase production by Rhizobium and Bradyrhizobium species. Soil Biology and Biochemistry, 1996, 28, 917-921.	8.8	37
61	Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. Journal of Microbiological Methods, 2004, 56, 413-426.	1.6	37
62	Photobacterium halotolerans sp. nov., isolated from Lake Martel in Spain. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1067-1071.	1.7	37
63	Restriction Fragment Length Polymorphism Analysis of 16S rDNA and Low Molecular Weight RNA Profiling of Rhizobial Isolates from Shrubby Legumes Endemic to the Canary Islands. Systematic and Applied Microbiology, 2000, 23, 418-425.	2.8	36
64	Enhancement of resolution of low molecular weight RNA profiles by staircase electrophoresis. Electrophoresis, 1997, 18, 1909-1911.	2.4	35
65	Alcanivorax balearicus sp. nov., isolated from Lake Martel. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1331-1335.	1.7	35
66	Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1850-1854.	1.7	35
67	Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 513-517.	1.7	32
68	Development of Functional Symbiotic White Clover Root Hairs and Nodules Requires Tightly Regulated Production of Rhizobial Cellulase CelC2. Molecular Plant-Microbe Interactions, 2011, 24, 798-807.	2.6	31
69	Rhizobium sullae sp. nov. (formerly 'Rhizobium hedysari'), the root-nodule microsymbiont of Hedysarum coronarium L International Journal of Systematic and Evolutionary Microbiology, 2002, 52, 1267-1276.	1.7	31
70	Genome Insights into the Novel Species Microvirga brassicacearum, a Rapeseed Endophyte with Biotechnological Potential. Microorganisms, 2019, 7, 354.	3.6	30
71	Mycobacterium psychrotolerans sp. nov., isolated from pond water near a uranium mine. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1459-1463.	1.7	29
72	Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1305-1309.	1.7	28

#	Article	IF	CITATIONS
73	Analysis of Stable Low-Molecular-Weight RNA Profiles of Members of the Family <i>Rhizobiaceae</i> . Applied and Environmental Microbiology, 1998, 64, 1555-1559.	3.1	28
74	A conserved αâ€proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots. Environmental Microbiology, 2017, 19, 2661-2680.	3.8	27
75	Direct in siut identification of cellulose microfibrils associated with <i>Rhizobium leguminosarum</i> biovar <i>trifolii</i> attached to the root epidermis of white clover. Canadian Journal of Microbiology, 1995, 41, 202-207.	1.7	26
76	Phenotypic, genotypic, and symbiotic diversities in strains nodulating clover in different soils in Spain. Canadian Journal of Microbiology, 2009, 55, 1207-1216.	1.7	25
77	Invasion of the Brazilian campo rupestre by the exotic grass Melinis minutiflora is driven by the high soil N availability and changes in the N cycle. Science of the Total Environment, 2017, 577, 202-211.	8.0	24
78	Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. Crops. Agronomy, 2020, 10, 1788.	3.0	24
79	A ClpB Chaperone Knockout Mutant of <i>Mesorhizobium ciceri</i> Shows a Delay in the Root Nodulation of Chickpea Plants. Molecular Plant-Microbe Interactions, 2012, 25, 1594-1604.	2.6	23
80	Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Systematic and Applied Microbiology, 2019, 42, 240-247.	2.8	22
81	MALDI-TOF mass spectrometry as a tool for differentiation of Bradyrhizobium species: Application to the identification of Lupinus nodulating strains. Systematic and Applied Microbiology, 2013, 36, 565-571.	2.8	21
82	Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2301-2305.	1.7	21
83	Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Systematic and Applied Microbiology, 2009, 32, 334-341.	2.8	20
84	Attenuation of Symbiotic Effectiveness by Rhizobium meliloti SAF22 Related to the Presence of a Cryptic Plasmid. Applied and Environmental Microbiology, 1995, 61, 2033-2036.	3.1	20
85	Title is missing!. European Journal of Plant Pathology, 2000, 106, 789-793.	1.7	19
86	Stable Low Molecular Weight RNA Analyzed by Staircase Electrophoresis, a Molecular Signature for Both Prokaryotic and Eukaryotic Microorganisms. Systematic and Applied Microbiology, 2001, 24, 490-499.	2.8	19
87	Natural endophytic association between Rhizobium leguminosarum bv. trifolii and rice roots and assessment of its potential to promote rice growth. , 1997, , 99-114.		19
88	Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis, 2015, 67, 25-32.	2.3	18
89	Analysis of LMW RNA Profiles of Frankia Strains by Staircase Electrophoresis. Systematic and Applied Microbiology, 1998, 21, 539-545.	2.8	17
90	Staircase electrophoresis profiles of stable low-molecular-weight RNAa new technique for yeast fingerprinting International Journal of Systematic and Evolutionary Microbiology, 2000, 50, 917-923.	1.7	17

#	Article	IF	CITATIONS
91	Symbiotic characteristics and selection of autochthonous strains of Sinorhizobium meliloti populations in different soils. Soil Biology and Biochemistry, 1999, 31, 1039-1047.	8.8	16
92	The high diversity of Lotus corniculatus endosymbionts in soils of northwest Spain. Symbiosis, 2015, 67, 11-20.	2.3	16
93	Paenibacillus periandrae sp. nov., isolated from nodules of Periandra mediterranea. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1838-1843.	1.7	16
94	Subnanomolar concentrations of membrane chitolipooligosaccharides from Rhizobium leguminosarum biovar trifolii are fully capable of eliciting symbiosis-related responses on white clover. Plant and Soil, 1996, 186, 93-98.	3.7	15
95	YeastIdent-Food/ProleFood, a new system for the identification of food yeasts based on physiological and biochemical tests. Food Microbiology, 2001, 18, 637-646.	4.2	15
96	Cellulase isoenzyme profiles in Frankia strains belonging to different cross-inoculation groups. Plant and Soil, 2001, 229, 35-39.	3.7	15
97	Yield response of common bean to co-inoculation with Rhizobium and Pseudomonas endophytes and microscopic evidence of different colonised spaces inside the nodule. European Journal of Agronomy, 2021, 122, 126187.	4.1	15
98	Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria. Agronomy, 2021, 11, 1796.	3.0	15
99	The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene. PLoS ONE, 2016, 11, e0148221.	2.5	14
100	Bacterial Probiotics: A Truly Green Revolution. , 2017, , 131-162.		14
101	Application of horizontal staircase electrophoresis in agarose minigels to the random intergenic spacer analysis of clinical samples. Electrophoresis, 2005, 26, 4402-4410.	2.4	13
102	The celC gene, a new phylogenetic marker useful for taxonomic studies in Rhizobium. Systematic and Applied Microbiology, 2011, 34, 393-399.	2.8	13
103	Bacillus terrae sp. nov. isolated from Cistus ladanifer rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1478-1481.	1.7	12
104	Influence of the symbiotic plasmid (pSym) on cellulase production by Rhizobium leguminosarum bv. trifolii ANU843. Soil Biology and Biochemistry, 1996, 28, 131-133.	8.8	11
105	Title is missing!. European Journal of Plant Pathology, 2001, 107, 931-938.	1.7	11
106	Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis, 2015, 67, 135-141.	2.3	11
107	Stable low molecular weight RNA profiling showed variations within Sinorhizobium meliloti and Sinorhizobium medicae nodulating different legumes from the alfalfa cross-inoculation group. FEMS Microbiology Letters, 2008, 282, 273-281.	1.8	10

The N-fixing legume Periandra mediterranea constrains the invasion of an exotic grass (Melinis) Tj ETQq0 0 0 rgBT $\frac{10}{3.3}$ Tf 50 62

#	Article	IF	CITATIONS
109	Heterologous Expression of Rhizobial CelC2 Cellulase Impairs Symbiotic Signaling and Nodulation in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2018, 31, 568-575.	2.6	9
110	Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. , 2007, , 23-33.		8
111	Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Systematic and Applied Microbiology, 2015, 38, 346-350.	2.8	8
112	Effective Colonization of Spinach Root Surface by Rhizobium. , 2016, , 109-122.		8
113	Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Scientific Reports, 2019, 9, 13907.	3.3	8
114	Key Molecules Involved in Beneficial Infection Process in Rhizobia–Legume Symbiosis. , 2010, , 55-80.		7
115	Recent Advances in the Active Biomolecules Involved in Rhizobia-Legume Symbiosis. , 2017, , 45-74.		7
116	Heterologous expression of nifA or nodD genes improves chickpea-Mesorhizobium symbiotic performance. Plant and Soil, 2019, 436, 607-621.	3.7	7
117	Analysis and effect of the use of biofertilizers on Trifolium rubens L., a preferential attention species in Castile and Leon, Spain, with the aim of increasing the plants conservation status. AIMS Microbiology, 2017, 3, 733-746.	2.2	7
118	Genomic fingerprinting of Frankia strains by PCR-based techniques. Assessment of a primer based on the sequence of 16S rRNA gene of Escherichia coli. Plant and Soil, 2003, 254, 115-123.	3.7	6
119	Analysis of the PCPB Potential of Bacterial Endophytes Associated with Maize. , 2016, , 23-35.		5
120	Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics. Environmental Science and Pollution Research, 2017, 24, 17436-17445.	5.3	5
121	Characterization of a strain of Pseudomonas fluorescens that solubilizes phosphates in vitro and produces high antibiotic activity against several microorganisms. , 2007, , 265-268.		4
122	Phosphate solubilizing rhizobia originating from Medicago, Melilotus and Trigonella grown in a Spanish soil. , 2007, , 149-156.		3
123	Rhizobial Biofertilizers for Ornamental Plants. , 2016, , 13-21.		3
124	Rhizobium Symbiotic Enzyme Cellulase CelC2: Properties and Applications. , 2016, , 81-89.		2
125	Role of QseG membrane protein in beneficial enterobacterial interactions with plants and <i>Mesorhizobia</i> . Journal of Plant Interactions, 2021, 16, 510-521.	2.1	2
126	Analysis of Stable Low Molecular Weight (LMW) RNA Profiles of Hydrocarbon Metabolizing Bacteria by Staircase Electrophoresis. Systematic and Applied Microbiology, 2001, 24, 290-293.	2.8	1

#	Article	IF	CITATIONS
127	A new approach for separating low-molecular-weight RNA molecules by staircase electrophoresis in non-sequencing gels. Electrophoresis, 2006, 27, 1732-1738.	2.4	1
128	Two strains isolated from tumours of Prunus persica are able to solubilize phosphate in vitro. , 2007, , 347-349.		1
129	Genomic fingerprinting of Frankia strains by PCR-based techniques. Assessment of a primer based on the sequence of 16S rRNA gene of Escherichia coli. , 2003, , 115-123.		0
130	Búsqueda de bacterias productoras de antibióticos a partir del culturoma rizosférico. FarmaJournal, 2020, 5, 43-50.	0.0	0