## Masahiro Ishikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960470/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Timing of Himalayan ultrahigh-pressure metamorphism: sinking rate and subduction angle of the<br>Indian continental crust beneath Asia. Journal of Metamorphic Geology, 2003, 21, 589-599.                                                                                       | 3.4 | 253       |
| 2  | Geology of the Kokchetav UHP-HP metamorphic belt, Northern Kazakhstan. Island Arc, 2000, 9, 264-283.                                                                                                                                                                             | 1.1 | 99        |
| 3  | Petrological model of the northern Izu–Bonin–Mariana arc crust: constraints from high-pressure<br>measurements of elastic wave velocities of the Tanzawa plutonic rocks, central Japan. Tectonophysics,<br>2003, 371, 213-221.                                                   | 2.2 | 75        |
| 4  | On-going orogeny in the outer-arc of the Timor–Tanimbar region, eastern Indonesia. Gondwana<br>Research, 2007, 11, 218-233.                                                                                                                                                      | 6.0 | 63        |
| 5  | Comparison of the metamorphic history of the Monapo Complex, northern Mozambique and<br>Balchenfjella and Austhameren areas, SÃr Rondane, Antarctica: Implications for the Kuunga Orogeny<br>and the amalgamation of N and S. Gondwana. Precambrian Research, 2013, 234, 85-135. | 2.7 | 58        |
| 6  | Evolution of late Cenozoic magmatism and the crust–mantle structure in the NE Japan Arc. Geological<br>Society Special Publication, 2014, 385, 335-387.                                                                                                                          | 1.3 | 58        |
| 7  | Laboratory measurement of P-wave velocity in crustal and upper mantle xenoliths from Ichino-megata,<br>NE Japan: ultrabasic hydrous lower crust beneath the NE Honshu arc. Tectonophysics, 2005, 396,<br>245-259.                                                                | 2.2 | 50        |
| 8  | Simultaneous high Pâ€T measurements of ultrasonic compressional and shear wave velocities in<br>Ichinoâ€megata mafic xenoliths: Their bearings on seismic velocity perturbations in lower crust of<br>northeast Japan arc. Journal of Geophysical Research, 2008, 113, .         | 3.3 | 46        |
| 9  | Chlorine-rich fluid or melt activity during granulite facies metamorphism in the Late Proterozoic to<br>Cambrian continental collision zone—An example from the Sør Rondane Mountains, East Antarctica.<br>Precambrian Research, 2013, 234, 229-246.                             | 2.7 | 33        |
| 10 | P-wave velocity and anisotropy of lawsonite and epidote blueschists: Constraints on water transportation along subducting oceanic crust. Physics of the Earth and Planetary Interiors, 2010, 183, 219-228.                                                                       | 1.9 | 32        |
| 11 | P- and S-wave velocities of the lowermost crustal rocks from the Kohistan arc: Implications for seismic Moho discontinuity attributed to abundant garnet. Tectonophysics, 2009, 467, 44-54.                                                                                      | 2.2 | 31        |
| 12 | Late-Tonian to early-Cryogenian apparent depositional ages for metacarbonate rocks from the SÃ,r<br>Rondane Mountains, East Antarctica. Precambrian Research, 2013, 234, 257-278.                                                                                                | 2.7 | 25        |
| 13 | Supercooled melt inclusions in lower-crustal granulites as a consequence of rapid exhumation by channel flow. Gondwana Research, 2014, 25, 226-234.                                                                                                                              | 6.0 | 23        |
| 14 | Laboratory measurements of P- and S-wave velocities in polycrystalline plagioclase and gabbronorite<br>up to 700 ŰC and 1 GPa: Implications for the low velocity anomaly in the lower crust. Geophysical<br>Research Letters, 2006, 33, .                                        | 4.0 | 21        |
| 15 | Discontinuous change in temperature derivative of Vp in lower crustal rocks. Geophysical Research<br>Letters, 2004, 31, .                                                                                                                                                        | 4.0 | 20        |
| 16 | Effect of H2O released by dehydration of serpentine and chlorite on compressional wave velocities of peridotites at 1GPa and up to 1000°C. Physics of the Earth and Planetary Interiors, 2007, 161, 215-223.                                                                     | 1.9 | 20        |
| 17 | Geodynamic evolution of Mt. Riiser-Larsen, Napier Complex, East Antarctica, with reference to the UHT mineral associations and their reaction relations. Geological Society Special Publication, 2008, 308, 253-282.                                                             | 1.3 | 20        |
| 18 | Temperature derivatives of elastic wave velocities in plagioclase (An51Â1) above and below the order-disorder transition temperature. American Mineralogist, 2008, 93, 558-564.                                                                                                  | 1.9 | 20        |

Masahiro Ishikawa

| #  | Article                                                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Sinistral transpressional and extensional tectonics in Dronning Maud Land, East Antarctica,<br>including the SÃ,r Rondane Mountains. Precambrian Research, 2013, 234, 30-46.                                                                                                            | 2.7 | 19        |
| 20 | Late Neoproterozoic extensional detachment in eastern SÃ,r Rondane Mountains, East Antarctica:<br>Implications for the collapse of the East African Antarctic Orogen. Precambrian Research, 2013, 234,<br>247-256.                                                                      | 2.7 | 16        |
| 21 | Prograde infiltration of Cl-rich fluid into the granulitic continental crust from a collision zone in<br>East Antarctica (Perlebandet, SÃ,r Rondane Mountains). Lithos, 2017, 274-275, 73-92.                                                                                           | 1.4 | 16        |
| 22 | Effects of strain gradients on asymmetry of experimental normal fault systems. Journal of Structural<br>Geology, 1995, 17, 1047-1053.                                                                                                                                                   | 2.3 | 14        |
| 23 | Structure and Evolution of the East Antarctic Lithosphere: Tectonic Implications for the Development and Dispersal of Gondwana. Gondwana Research, 2004, 7, 31-41.                                                                                                                      | 6.0 | 14        |
| 24 | Origins of the lower crustal reflectivity in the Lützow-Holm Complex, Enderby Land, East Antarctica.<br>Earth, Planets and Space, 2004, 56, 151-162.                                                                                                                                    | 2.5 | 13        |
| 25 | Geochemical behavior of zirconium during Cl–rich fluid or melt infiltration under upper amphibolite<br>facies metamorphism — A case study from Brattnipene, SÃr Rondane Mountains, East Antarctica.<br>Journal of Mineralogical and Petrological Sciences, 2015, 110, 166-178.          | 0.9 | 13        |
| 26 | Kinematic analysis of ultrahigh-pressure-high-pressure metamorphic rocks in the Chaglinka-Kulet area<br>of the Kokchetav Massif, Kazakhstan. Island Arc, 2000, 9, 304-316.                                                                                                              | 1.1 | 11        |
| 27 | Subhorizontal boundary between ultrahigh-pressure and low-pressure metamorphic units in the<br>Sulu-Tjube area of the Kokchetav Massif, Kazakhstan. Island Arc, 2000, 9, 317-327.                                                                                                       | 1.1 | 11        |
| 28 | Simultaneous measurements of compressional wave and shear wave velocities, Poisson's ratio, and<br><i>Vp</i> / <i>Vs</i> under deep crustal pressure and temperature conditions: Example of silicified<br>pelitic schist from Ryoke Belt, Southwest Japan. Island Arc, 2010, 19, 30-39. | 1.1 | 11        |
| 29 | Laboratory measurements of Vp and Vs in a porosity-developed crustal rock: Experimental<br>investigation into the effects of porosity at deep crustal pressures. Tectonophysics, 2016, 677-678,<br>218-226.                                                                             | 2.2 | 11        |
| 30 | Laboratory measurements of â€~porosityâ€free' intrinsic <i><scp>V</scp>p</i> and <i><scp>V</scp>s</i> in an olivine gabbro of the <scp>O</scp> man ophiolite: Implication for interpretation of the seismic structure of lower oceanic crust. Island Arc, 2015, 24, 131-144.            | 1.1 | 10        |
| 31 | Brine Infiltration in the Middle to Lower Crust in a Collision Zone: Mass Transfer and Microtexture<br>Development Through Wet Grain–Boundary Diffusion. Journal of Petrology, 2019, 60, 329-358.                                                                                       | 2.8 | 10        |
| 32 | Northward extrusion of the ultrahighâ€pressure units in the southern <scp>D</scp> abie metamorphic<br>belt, eastâ€central <scp>C</scp> hina. Island Arc, 2013, 22, 51-62.                                                                                                               | 1.1 | 8         |
| 33 | Crustal assembly of the Antananarivo and Masora domains, central–eastern Madagascar: constraints<br>from U–Pb zircon geochronology and whole–rock geochemistry of meta–granitoids. Journal of<br>Mineralogical and Petrological Sciences, 2015, 110, 111-125.                           | 0.9 | 8         |
| 34 | Fold structures and left-lateral ductile shear in the Gosaisho metamorphic belt, Northeast Japan<br>Journal of the Geological Society of Japan, 1990, 96, 719-730.                                                                                                                      | 0.6 | 8         |
| 35 | Elastic properties of high-grade metamorphosed igneous rocks from Enderby Land and eastern<br>Dronning Maud Land, Antarctica: evidence for biotite-bearing mafic lower crust. Geological Society<br>Special Publication, 2008, 308, 183-194.                                            | 1.3 | 6         |
| 36 | Pressure–temperature–time path of a metapelite from Mefjell, SÃ,r Rondane Mountains, East<br>Antarctica. Journal of Mineralogical and Petrological Sciences, 2017, 112, 77-87.                                                                                                          | 0.9 | 6         |

MASAHIRO ISHIKAWA

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Effect of fluid H2O on compressional wave velocities in quartz aggregate up to 500°C at 0.5 GPa.<br>Earth, Planets and Space, 2014, 66, .                                                | 2.5 | 5         |
| 38 | Sr and Nd Isotopic evidence in metacarbonate rocks for an extinct Island arc–ocean system in East<br>Antarctica. Journal of Mineralogical and Petrological Sciences, 2016, 111, 170-180. | 0.9 | 5         |
| 39 | Sintering polycrystalline olivine and polycrystalline clinopyroxene containing trace amount of graphite from natural crystals. Earth, Planets and Space, 2017, 69, .                     | 2.5 | 5         |
| 40 | Subhorizontal tectonic framework of the Horoman peridotite complex and enveloping crustal rocks, southâ€central Hokkaido, Japan. Island Arc, 2010, 19, 458-469.                          | 1.1 | 4         |
| 41 | Laboratory Measurements of Ultrasonic Wave Velocities of Crustal Rocks at High Pressures and Temperatures: Petrological Structure of Izu-Bonin-Mariana Arc Crust. , 2009, , 143-152.     |     | 4         |
| 42 | Deep crustal and uppermost mantle lithology of Island Arcs:. Journal of the Geological Society of<br>Japan, 2017, 123, 355-364.                                                          | 0.6 | 3         |
| 43 | Sintering nanocrystalline diopside from pulverized diopside crystals. Journal of Mineralogical and Petrological Sciences, 2017, 112, 127-131.                                            | 0.9 | 3         |
| 44 | Felsic lower crust and orthopyroxenitic mantle beneath the Kitakami Mountains, Japan: Evidence for slab melting in the Cretaceous. Ganseki Kobutsu Kagaku, 2014, 43, 100-107.            | 0.1 | 2         |

4