
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7960176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 1451-1463.	3.2	2,864
2	A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering, 1998, 58, 486-493.	3.3	469
3	Immobilization of lipases by selective adsorption on hydrophobic supports. Chemistry and Physics of Lipids, 1998, 93, 185-197.	3.2	441
4	Interfacial adsorption of lipases on very hydrophobic support (octadecyl–Sepabeads): immobilization, hyperactivation and stabilization of the open form of lipases. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 279-286.	1.8	384
5	Different mechanisms of protein immobilization on glutaraldehyde activated supports: Effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 2006, 39, 877-882.	3.2	361
6	Glyoxyl agarose: A fully inert and hydrophilic support for immobilization and high stabilization of proteins. Enzyme and Microbial Technology, 2006, 39, 274-280.	3.2	347
7	Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachmentâ~†. Enzyme and Microbial Technology, 2000, 26, 509-515.	3.2	316
8	Multifunctional Epoxy Supports:Â A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules, 2000, 1, 739-745.	5.4	281
9	Immobilization of enzymes on heterofunctional epoxy supports. Nature Protocols, 2007, 2, 1022-1033.	12.0	269
10	Epoxy Sepabeads: A Novel Epoxy Support for Stabilization of Industrial Enzymes via Very Intense Multipoint Covalent Attachment. Biotechnology Progress, 2002, 18, 629-634.	2.6	259
11	Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. Journal of Biotechnology, 2005, 119, 70-75.	3.8	259
12	Some special features of glyoxyl supports to immobilize proteins. Enzyme and Microbial Technology, 2005, 37, 456-462.	3.2	257
13	Preparation of activated supports containing low pK amino groups. A new tool for protein immobilization via the carboxyl coupling method. Enzyme and Microbial Technology, 1993, 15, 546-550.	3.2	240
14	Epoxy-Amino Groups:Â A New Tool for Improved Immobilization of Proteins by the Epoxy Method. Biomacromolecules, 2003, 4, 772-777.	5.4	234
15	Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support-polyethylenimine composites. , 2000, 68, 98-105.		225
16	General Trend of Lipase to Self-Assemble Giving Bimolecular Aggregates Greatly Modifies the Enzyme Functionality. Biomacromolecules, 2003, 4, 1-6.	5.4	212
17	Effect of the support and experimental conditions in the intensity of the multipoint covalent attachment of proteins on glyoxyl-agarose supports: Correlation between enzyme–support linkages and thermal stability. Enzyme and Microbial Technology, 2007, 40, 1160-1166.	3.2	200
18	Activation of Bacterial Thermoalkalophilic Lipases Is Spurred by Dramatic Structural Rearrangements. Journal of Biological Chemistry, 2009, 284, 4365-4372.	3.4	196

#	Article	IF	CITATIONS
19	Interfacially activated lipases against hydrophobic supports: Effect of the support nature on the biocatalytic properties. Process Biochemistry, 2008, 43, 1061-1067.	3.7	191
20	Advances in the design of new epoxy supports for enzyme immobilization–stabilization. Biochemical Society Transactions, 2007, 35, 1593-1601.	3.4	188
21	Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of mandelic acid esters. Enzyme and Microbial Technology, 2002, 31, 775-783.	3.2	160
22	Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. Journal of Molecular Catalysis B: Enzymatic, 2009, 57, 171-176.	1.8	159
23	Strategies for enzyme stabilization by intramolecular crosslinking with bifunctional reagents. Enzyme and Microbial Technology, 1995, 17, 517-523.	3.2	145
24	Immobilization-stabilization of Penicillin G acylase fromEscherichia coli. Applied Biochemistry and Biotechnology, 1990, 26, 181-195.	2.9	141
25	The coimmobilization of d-amino acid oxidase and catalase enables the quantitative transformation of d-amino acids (d-phenylalanine) into α-keto acids (phenylpyruvic acid). Enzyme and Microbial Technology, 1998, 23, 28-33.	3.2	137
26	Taking Advantage of Unspecific Interactions to Produce Highly Active Magnetic Nanoparticleâ~Antibody Conjugates. ACS Nano, 2011, 5, 4521-4528.	14.6	133
27	Encapsulation of crosslinked penicillin G acylase aggregates in lentikats: Evaluation of a novel biocatalyst in organic media. Biotechnology and Bioengineering, 2004, 86, 558-562.	3.3	130
28	Modulation of the enantioselectivity of Candida antarctica B lipase via conformational engineering. Kinetic resolution of (±)-α-hydroxy-phenylacetic acid derivatives. Tetrahedron: Asymmetry, 2002, 13, 1337-1345.	1.8	124
29	Rational Coâ€Immobilization of Biâ€Enzyme Cascades on Porous Supports and their Applications in Bioâ€Redox Reactions with Inâ€Situ Recycling of Soluble Cofactors. ChemCatChem, 2012, 4, 1279-1288.	3.7	123
30	Use of immobilized lipases for lipase purification via specific lipase–lipase interactions. Journal of Chromatography A, 2004, 1038, 267-273.	3.7	121
31	Glutaraldehyde Cross-Linking of Lipases Adsorbed on Aminated Supports in the Presence of Detergents Leads to Improved Performance. Biomacromolecules, 2006, 7, 2610-2615.	5.4	121
32	Co-Aggregation of Penicillin G Acylase and Polyionic Polymers:Â An Easy Methodology To Prepare Enzyme Biocatalysts Stable in Organic Media. Biomacromolecules, 2004, 5, 852-857.	5.4	120
33	Stabilization of multimeric enzymes via immobilization and post-immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 181-189.	1.8	119
34	Self-assembly ofPseudomonas fluorescenslipase into bimolecular aggregates dramatically affects functional properties. Biotechnology and Bioengineering, 2003, 82, 232-237.	3.3	119
35	Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Journal of Biotechnology, 2005, 116, 1-10.	3.8	114
36	CLEAs of lipases and poly-ionic polymers: A simple way of preparing stable biocatalysts with improved properties. Enzyme and Microbial Technology, 2006, 39, 750-755.	3.2	114

#	Article	IF	CITATIONS
37	Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers. Journal of the American Chemical Society, 2002, 124, 12845-12853.	13.7	111
38	Stabilization of Penicillin G Acylase from Escherichia coli : Site-Directed Mutagenesis of the Protein Surface To Increase Multipoint Covalent Attachment. Applied and Environmental Microbiology, 2004, 70, 1249-1251.	3.1	111
39	Coating of Soluble and Immobilized Enzymes with Ionic Polymers: Full Stabilization of the Quaternary Structure of Multimeric Enzymes. Biomacromolecules, 2009, 10, 742-747.	5.4	111
40	The immobilization of a thermophilic β-galactosidase on Sepabeads supports decreases product inhibition. Enzyme and Microbial Technology, 2003, 33, 199-205.	3.2	110
41	Lipase–lipase interactions as a new tool to immobilize and modulate the lipase properties. Enzyme and Microbial Technology, 2005, 36, 447-454.	3.2	110
42	Specificity enhancement towards hydrophobic substrates by immobilization of lipases by interfacial activation on hydrophobic supports. Enzyme and Microbial Technology, 2007, 41, 565-569.	3.2	109
43	Dextran aldehyde coating of glucose oxidase immobilized on magnetic nanoparticles prevents its inactivation by gas bubbles. Journal of Molecular Catalysis B: Enzymatic, 2005, 32, 97-101.	1.8	106
44	One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnology and Bioengineering, 2001, 76, 269-276.	3.3	103
45	Immobilization-stabilization of α-chymotrypsin by covalent attachment to aldehyde-agarose gels. Biotechnology and Bioengineering, 1991, 38, 1144-1152.	3.3	101
46	Solid-Phase Chemical Amination of a Lipase from Bacillus thermocatenulatus To Improve Its Stabilization via Covalent Immobilization on Highly Activated Glyoxyl-Agarose. Biomacromolecules, 2008, 9, 2553-2561.	5.4	98
47	Modulation of penicillin acylase properties via immobilization techniques: one-pot chemoenzymatic synthesis of cephamandole from cephalosporin C. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 2429-2432.	2.2	97
48	Facile synthesis of artificial enzyme nano-environments via solid-phase chemistry of immobilized derivatives: Dramatic stabilization of penicillin acylase versus organic solvents. Enzyme and Microbial Technology, 1999, 24, 96-103.	3.2	96
49	Solid-Phase Handling of Hydrophobins:Â Immobilized Hydrophobins as a New Tool To Study Lipases. Biomacromolecules, 2003, 4, 204-210.	5.4	96
50	Co-aggregation of Enzymes and Polyethyleneimine:Â A Simple Method To Prepare Stable and Immobilized Derivatives of Glutaryl Acylase. Biomacromolecules, 2005, 6, 1839-1842.	5.4	96
51	Cross-Linked Aggregates of Multimeric Enzymes:Â A Simple and Efficient Methodology To Stabilize Their Quaternary Structure. Biomacromolecules, 2004, 5, 814-817.	5.4	95
52	Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme and Microbial Technology, 2001, 28, 389-396.	3.2	94
53	Structural and Functional Stabilization of L-Asparaginase via Multisubunit Immobilization onto Highly Activated Supports. Biotechnology Progress, 2001, 17, 537-542.	2.6	93
54	Improvement of Enzyme Properties with a Two-Step Immobilizaton Process on Novel Heterofunctional Supports. Biomacromolecules, 2010, 11, 3112-3117.	5.4	93

#	Article	IF	CITATIONS
55	Immobilization–stabilization of the lipase from Thermomyces lanuginosus: Critical role of chemical amination. Process Biochemistry, 2009, 44, 963-968.	3.7	92
56	Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. full hydrolysis of lactose in milk. Biotechnology Progress, 2004, 20, 1259-1262.	2.6	90
57	Stabilization of enzymes by multipoint immobilization of thiolated proteins on new epoxy-thiol supports. Biotechnology and Bioengineering, 2005, 90, 597-605.	3.3	90
58	Modulation of Mucor miehei lipase properties via directed immobilization on different hetero-functional epoxy resins. Journal of Molecular Catalysis B: Enzymatic, 2003, 21, 201-210.	1.8	88
59	Oriented immobilization of antibodies onto sensing platforms - A critical review. Analytica Chimica Acta, 2022, 1189, 338907.	5.4	88
60	Preparation of a Stable Biocatalyst of Bovine Liver Catalase Using Immobilization and Postimmobilization Techniques. Biotechnology Progress, 2003, 19, 763-767.	2.6	87
61	Preparation of inert magnetic nano-particles for the directed immobilization of antibodies. Biosensors and Bioelectronics, 2005, 20, 1380-1387.	10.1	86
62	Improvement of the stability of alcohol dehydrogenase by covalent immobilization on glyoxyl-agarose. Journal of Biotechnology, 2006, 125, 85-94.	3.8	86
63	Enzyme reaction engineering: Synthesis of antibiotics catalysed by stabilized penicillin G acylase in the presence of organic cosolvents. Enzyme and Microbial Technology, 1991, 13, 898-905.	3.2	84
64	Novel Bifunctional Epoxy/Thiol-Reactive Support to Immobilize Thiol Containing Proteins by the Epoxy Chemistry. Biomacromolecules, 2003, 4, 1495-1501.	5.4	84
65	Reversible and strong immobilization of proteins by ionic exchange on supports coated with sulfate-dextran. Biotechnology Progress, 2004, 20, 1134-1139.	2.6	82
66	Improved catalytic properties of immobilized lipases by the presence of very low concentrations of detergents in the reaction medium. Biotechnology and Bioengineering, 2007, 97, 242-250.	3.3	81
67	Reversible immobilization of a thermophilic β-galactosidase via ionic adsorption on PEI-coated Sepabeads. Enzyme and Microbial Technology, 2003, 32, 369-374.	3.2	80
68	Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports. , 1998, 59, 73-79.		79
69	Optimization of the Production of Enzymatic Biodiesel from Residual Babassu Oil (Orbignya sp.) via RSM. Catalysts, 2020, 10, 414.	3.5	79
70	One-Step Purification, Covalent Immobilization, and Additional Stabilization of a Thermophilic Poly-His-Tagged β-Galactosidase fromThermussp. Strain T2 by using Novel Heterofunctional Chelateâ^'Epoxy Sepabeads. Biomacromolecules, 2003, 4, 107-113.	5.4	78
71	Preparation of a very stable immobilized biocatalyst of glucose oxidase from Aspergillus niger. Journal of Biotechnology, 2006, 121, 284-289.	3.8	78
72	A Novel Heterofunctional Epoxy-Amino Sepabeads for a New Enzyme Immobilization Protocol: Immobilization-Stabilization of β-Galactosidase from Aspergillus oryzae. Biotechnology Progress, 2003, 19, 1056-1060.	2.6	77

#	Article	IF	CITATIONS
73	Biotransformations Catalyzed by Multimeric Enzymes:Â Stabilization of Tetrameric Ampicillin Acylase Permits the Optimization of Ampicillin Synthesis under Dissociation Conditions. Biomacromolecules, 2001, 2, 95-104.	5.4	76
74	Affinity chromatography of polyhistidine tagged enzymes. Journal of Chromatography A, 2001, 915, 97-106.	3.7	75
75	Reversible Immobilization of Invertase on Sepabeads Coated with Polyethyleneimine: Optimization of the Biocatalyst's Stability. Biotechnology Progress, 2002, 18, 1221-1226.	2.6	75
76	Stabilization of a Formate Dehydrogenase by Covalent Immobilization on Highly Activated Glyoxyl-Agarose Supports. Biomacromolecules, 2006, 7, 669-673.	5.4	75
77	Improvement of the functional properties of a thermostable lipase from alcaligenes sp. via strong adsorption on hydrophobic supports. Enzyme and Microbial Technology, 2006, 38, 975-980.	3.2	75
78	A Novel Halophilic Lipase, LipBL, Showing High Efficiency in the Production of Eicosapentaenoic Acid (EPA). PLoS ONE, 2011, 6, e23325.	2.5	75
79	Use of dextrans as long and hydrophilic spacer arms to improve the performance of immobilized proteins acting on macromolecules. , 1998, 60, 518-523.		74
80	The presence of methanol exerts a strong and complex modulation of the synthesis of different antibiotics by immobilized penicillin G acylase. Enzyme and Microbial Technology, 1998, 23, 305-310.	3.2	74
81	Stabilization of heterodimeric enzyme by multipoint covalent immobilization: Penicillin G acylase fromKluyvera citrophila. Biotechnology and Bioengineering, 1993, 42, 455-464.	3.3	73
82	Immobilization/stabilization of lipase fromCandida rugosa. Applied Biochemistry and Biotechnology, 1988, 19, 163-175.	2.9	71
83	lon exchange using poorly activated supports, an easy way for purification of large proteins. Journal of Chromatography A, 2004, 1034, 155-159.	3.7	70
84	Two step ethanolysis: A simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized–stabilized lipase from Thermomyces lanuginosus. Process Biochemistry, 2010, 45, 1268-1273.	3.7	70
85	Evaluation of different enzymes as catalysts for the production of β-lactam antibiotics following a kinetically controlled strategy. Enzyme and Microbial Technology, 1999, 25, 336-343.	3.2	69
86	Determination of protein-protein interactions through aldehyde-dextran intermolecular cross-linking. Proteomics, 2004, 4, 2602-2607.	2.2	69
87	Preparation of a robust biocatalyst of d-amino acid oxidase on sepabeads supports using the glutaraldehyde crosslinking method. Enzyme and Microbial Technology, 2005, 37, 750-756.	3.2	69
88	Synthesis of antibiotics (cephaloglycin) catalyzed by penicillin G acylase: Evaluation and optimization of different synthetic approaches. Enzyme and Microbial Technology, 1996, 19, 9-14.	3.2	68
89	Prevention of interfacial inactivation of enzymes by coating the enzyme surface with dextran-aldehyde. Journal of Biotechnology, 2004, 110, 201-207.	3.8	68
90	Purification, Immobilization, and Stabilization of a Lipase from Bacillus thermocatenulatus by Interfacial Adsorption on Hydrophobic Supports. Biotechnology Progress, 2008, 20, 630-635.	2.6	68

#	Article	IF	CITATIONS
91	Hydrolysis of Proteins by Immobilized-Stabilized Alcalase-Glyoxyl Agarose. Biotechnology Progress, 2003, 19, 352-360.	2.6	67
92	Modulation of Immobilized Lipase Enantioselectivityvia Chemical Amination. Advanced Synthesis and Catalysis, 2007, 349, 1119-1127.	4.3	66
93	Stabilization of different alcohol oxidases via immobilization and post immobilization techniques. Enzyme and Microbial Technology, 2007, 40, 278-284.	3.2	66
94	Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chemistry, 2014, 16, 303-311.	9.0	66
95	Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports. Journal of Chromatography A, 1999, 848, 61-70.	3.7	65
96	Detecting minimal traces of DNA using DNA covalently attached to superparamagnetic nanoparticles and direct PCR-ELISA. Biosensors and Bioelectronics, 2006, 21, 1574-1580.	10.1	65
97	Evaluation of different immobilization strategies to prepare an industrial biocatalyst of formate dehydrogenase from Candida boidinii. Enzyme and Microbial Technology, 2007, 40, 540-546.	3.2	65
98	Immobilization of Bacillus circulans β-galactosidase and its application in the synthesis of galacto-oligosaccharides under repeated-batch operation. Biochemical Engineering Journal, 2013, 77, 41-48.	3.6	65
99	Effect of lipase–lipase interactions in the activity, stability and specificity of a lipase from Alcaligenes sp Enzyme and Microbial Technology, 2006, 39, 259-264.	3.2	64
100	Use of Physicochemical Tools to Determine the Choice of Optimal Enzyme: Stabilization of -Amino Acid Oxidase. Biotechnology Progress, 2003, 19, 784-788.	2.6	63
101	Synthesis of enantiomerically pure glycidol via a fully enantioselective lipase-catalyzed resolution. Tetrahedron: Asymmetry, 2005, 16, 869-874.	1.8	63
102	Preparation of artificial hyper-hydrophilic micro-environments (polymeric salts) surrounding enzyme molecules. Journal of Molecular Catalysis B: Enzymatic, 2002, 19-20, 295-303.	1.8	62
103	Preparation of new lipases derivatives with high activity–stability in anhydrous media: adsorption on hydrophobic supports plus hydrophilization with polyethylenimine. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 817-824.	1.8	61
104	Regio-selective deprotection of peracetylated sugars via lipase hydrolysis. Tetrahedron, 2003, 59, 5705-5711.	1.9	61
105	Modulation of the distribution of small proteins within porous matrixes by smart-control of the immobilization rate. Journal of Biotechnology, 2011, 155, 412-420.	3.8	61
106	Influence of the enzyme derivative preparation and substrate structure on the enantioselectivity of penicillin G acylase. Enzyme and Microbial Technology, 2002, 31, 88-93.	3.2	59
107	Immobilization and stabilization of glutaryl acylase on aminated sepabeads supports by the glutaraldehyde crosslinking method. Journal of Molecular Catalysis B: Enzymatic, 2005, 35, 57-61.	1.8	59
108	Stabilization of enzymes (d-amino acid oxidase) against hydrogen peroxide via immobilization and post-immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 1999, 7, 173-179.	1.8	58

#	Article	IF	CITATIONS
109	Glyoxyl agarose as a new chromatographic matrix. Enzyme and Microbial Technology, 2006, 38, 960-966.	3.2	56
110	Heterofunctional supports for the one-step purification, immobilization and stabilization of large multimeric enzymes: Amino-glyoxyl versus amino-epoxy supports. Process Biochemistry, 2010, 45, 1692-1698.	3.7	56
111	Influence of different immobilization techniques for Candida cylindracea lipase on its stability and fish oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2012, 78, 111-118.	1.8	56
112	A criterion for the selection of monophasic solvents for enzymatic synthesis. Enzyme and Microbial Technology, 1998, 23, 64-69.	3.2	55
113	Glutaraldehyde modification of lipases adsorbed on aminated supports: A simple way to improve their behaviour as enantioselective biocatalyst. Enzyme and Microbial Technology, 2007, 40, 704-707.	3.2	55
114	Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochemistry, 2010, 45, 390-398.	3.7	55
115	Additional stabilization of penicillin G acylase-agarose derivatives by controlled chemical modification with formaldehyde. Enzyme and Microbial Technology, 1992, 14, 489-495.	3.2	54
116	One-Pot Chemoenzymatic Synthesis of 3â€~-Functionalized Cephalosporines (Cefazolin) by Three Consecutive Biotransformations in Fully Aqueous Medium. Journal of Organic Chemistry, 1997, 62, 9099-9106.	3.2	54
117	Electrostatic and covalent immobilisation of enzymes on ITQ-6 delaminated zeolitic materials. Chemical Communications, 2001, , 419-420.	4.1	54
118	Immobilization and Stabilization of Recombinant Multimeric Uridine and Purine Nucleoside Phosphorylases fromBacillus subtilis. Biomacromolecules, 2004, 5, 2195-2200.	5.4	54
119	Improvement of the enantioselectivity of lipase (fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose under different experimental conditions. Enzyme and Microbial Technology, 2006, 39, 167-171.	3.2	54
120	Carrier-Free Immobilization of Lipase from <i>Candida rugosa</i> with Polyethyleneimines by Carboxyl-Activated Cross-Linking. Biomacromolecules, 2014, 15, 1896-1903.	5.4	54
121	Improved catalytic properties of Candida antarctica lipase B multi-attached on tailor-made hydrophobic silica containing octyl and multifunctional amino- glutaraldehyde spacer arms. Process Biochemistry, 2016, 51, 2055-2066.	3.7	54
122	Purification and stabilization of a glutamate dehygrogenase from Thermus thermophilus via oriented multisubunit plus multipoint covalent immobilization. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 158-163.	1.8	53
123	Regioselective monodeprotection of peracetylated carbohydrates. Nature Protocols, 2012, 7, 1783-1796.	12.0	53
124	Advantages of the Pre-Immobilization of Enzymes on Porous Supports for Their Entrapment in Solâ^Gels. Biomacromolecules, 2005, 6, 1027-1030.	5.4	51
125	Enhancement of Novozym-435 catalytic properties by physical or chemical modification. Process Biochemistry, 2009, 44, 226-231.	3.7	51
126	Design of an immobilized preparation of catalase from Thermus thermophilus to be used in a wide range of conditions Enzyme and Microbial Technology, 2003, 33, 278-285.	3.2	50

#	Article	IF	CITATIONS
127	Design of New Immobilized-Stabilized Carboxypeptidase A Derivative for Production of Aromatic Free Hydrolysates of Proteins. Biotechnology Progress, 2003, 19, 565-574.	2.6	50
128	One-step purification and characterization of an intracellular β-glucosidase from Metschnikowia pulcherrima. Biotechnology Letters, 2008, 30, 1469-1475.	2.2	50
129	Covalent Immobilization of Antibodies on Finally Inert Support Surfaces through their Surface Regions Having the Highest Densities in Carboxyl Groups. Biomacromolecules, 2008, 9, 2230-2236.	5.4	50
130	Biocatalyst engineering exerts a dramatic effect on selectivity of hydrolysis catalyzed by immobilized lipases in aqueous medium. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 649-656.	1.8	49
131	Selective oxidation: stabilisation by multipoint attachment of ferredoxin NADP+ reductase, an interesting cofactor recycling enzyme. Journal of Molecular Catalysis A, 1995, 98, 161-169.	4.8	48
132	Optimization of an industrial biocatalyst of glutaryl acylase: Stabilization of the enzyme by multipoint covalent attachment onto new amino-epoxy Sepabeads. Journal of Biotechnology, 2004, 111, 219-227.	3.8	48
133	Purification of different lipases fromAspergillus niger by using a highly selective adsorption on hydrophobic supports. Biotechnology and Bioengineering, 2005, 92, 773-779.	3.3	48
134	Purification and very strong reversible immobilization of large proteins on anionic exchangers by controlling the support and the immobilization conditions. Enzyme and Microbial Technology, 2006, 39, 909-915.	3.2	48
135	Immobilization and stabilization of an endoxylanase from Bacillus subtilis (XynA) for xylooligosaccharides (XOs) production. Catalysis Today, 2016, 259, 130-139.	4.4	48
136	Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Biotechnology Progress, 2004, 20, 1297-1300.	2.6	47
137	Polyethyleneimine (PEI) functionalized ceramic monoliths as enzyme carriers: Preparation and performance. Journal of Molecular Catalysis B: Enzymatic, 2008, 50, 20-27.	1.8	47
138	Selective oxidation of glycerol to 1,3-dihydroxyacetone by covalently immobilized glycerol dehydrogenases with higher stability and lower product inhibition. Bioresource Technology, 2014, 170, 445-453.	9.6	47
139	Thermus thermophilus as a Cell Factory for the Production of a Thermophilic Mn-Dependent Catalase Which Fails To Be Synthesized in an Active Form in Escherichia coli. Applied and Environmental Microbiology, 2004, 70, 3839-3844.	3.1	46
140	Chemical Modification of Protein Surfaces To Improve Their Reversible Enzyme Immobilization on Ionic Exchangers. Biomacromolecules, 2006, 7, 3052-3058.	5.4	46
141	Crosslinked Penicillin Acylase Aggregates for Synthesis of β-Lactam Antibiotics in Organic Medium. Applied Biochemistry and Biotechnology, 2006, 133, 189-202.	2.9	46
142	The presence of thiolated compounds allows the immobilization of enzymes on glyoxyl agarose at mild pH values: New strategies of stabilization by multipoint covalent attachment. Enzyme and Microbial Technology, 2009, 45, 477-483.	3.2	46
143	Crossâ€Linking of Lipases Adsorbed on Hydrophobic Supports: Highly Selective Hydrolysis of Fish Oil Catalyzed by RML. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 801-807.	1.9	46
144	Regioselective Hydrolysis of Different Peracetylated βâ€Monosaccharides by Immobilized Lipases from Different Sources. Key Role of The Immobilization. Advanced Synthesis and Catalysis, 2007, 349, 1969-1976.	4.3	45

#	Article	IF	CITATIONS
145	New biotechnological perspectives of a NADH oxidase variant from Thermus thermophilus HB27 as NAD+-recycling enzyme. BMC Biotechnology, 2011, 11, 101.	3.3	45
146	Stabilization of Immobilized Enzymes Against Water-Soluble Organic Cosolvents and Generation of Hyper-Hydrophilic Micro-Environments Surrounding Enzyme Molecules. Biocatalysis and Biotransformation, 2001, 19, 489-503.	2.0	44
147	Stabilization of a Multimeric β-Galactosidase from Thermus sp. Strain T2 by Immobilization on Novel Heterofunctional Epoxy Supports Plus Aldehyde-Dextran Cross-Linking. Biotechnology Progress, 2008, 20, 388-392.	2.6	44
148	Immobilization of functionally unstable catechol-2,3-dioxygenase greatly improves operational stability. Enzyme and Microbial Technology, 2000, 26, 568-573.	3.2	43
149	Enzymatic resolution of (±)-glycidyl butyrate in aqueous media. Strong modulation of the properties of the lipase from Rhizopus oryzae via immobilization techniques. Tetrahedron: Asymmetry, 2004, 15, 1157-1161.	1.8	43
150	Lecitase® ultra as regioselective biocatalyst in the hydrolysis of fully protected carbohydrates. Journal of Molecular Catalysis B: Enzymatic, 2008, 51, 110-117.	1.8	43
151	Novel support for enzyme immobilization prepared by chemical activation with cysteine and glutaraldehyde. Journal of Molecular Catalysis B: Enzymatic, 2014, 102, 218-224.	1.8	43
152	Modulation of the activity and selectivity of the immobilized lipases by surfactants and solvents. Biochemical Engineering Journal, 2015, 93, 274-280.	3.6	43
153	Equilibrium controlled synthesis of cephalothin in water-cosolvent systems by stabilized penicillin G acylase. Applied Biochemistry and Biotechnology, 1991, 27, 277-290.	2.9	42
154	Enzymatic production of (3S,4R)-(â^')-4-(4′-fluorophenyl)-6-oxo-piperidin-3-carboxylic acid using a commercial preparation from Candida antarctica A: the role of a contaminant esterase. Tetrahedron: Asymmetry, 2002, 13, 2653-2659.	1.8	42
155	Effect of the immobilization protocol in the activity, stability, and enantioslectivity of Lecitase® Ultra. Journal of Molecular Catalysis B: Enzymatic, 2007, 47, 99-104.	1.8	42
156	Immobilization–stabilization of a new recombinant glutamate dehydrogenase from Thermus thermophilus. Applied Microbiology and Biotechnology, 2008, 80, 49-58.	3.6	42
157	Xylanase and β-xylosidase from Penicillium janczewskii : Purification, characterization and hydrolysis of substrates. Electronic Journal of Biotechnology, 2016, 23, 54-62.	2.2	42
158	Dynamic reaction design of enzymic biotransformations in organic media: equilibrium-controlled synthesis of antibiotics by penicillin G acylase. Biotechnology and Applied Biochemistry, 1996, 24, 139-43.	3.1	42
159	Enzymatic resolution of (±)-trans-4-(4′-fluorophenyl)-6-oxo-piperidin-3-ethyl carboxylate, an intermediate in the synthesis of (â^')-Paroxetine. Tetrahedron: Asymmetry, 2002, 13, 2375-2381.	1.8	41
160	Genetic Modification of the Penicillin G Acylase Surface To Improve Its Reversible Immobilization on Ionic Exchangers. Applied and Environmental Microbiology, 2007, 73, 312-319.	3.1	41
161	Immobilization of Yarrowia lipolytica Lipase—a Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques. Applied Biochemistry and Biotechnology, 2008, 146, 49-56.	2.9	41
162	Enhanced activity of an immobilized lipase promoted by site-directed chemical modification with polymers. Process Biochemistry, 2010, 45, 534-541.	3.7	41

#	Article	IF	CITATIONS
163	Glyoxyl-Disulfide Agarose: A Tailor-Made Support for Site-Directed Rigidification of Proteins. Biomacromolecules, 2011, 12, 1800-1809.	5.4	41
164	Modulation of the regioselectivity of Thermomyces lanuginosus lipase via biocatalyst engineering for the Ethanolysis of oil in fully anhydrous medium. BMC Biotechnology, 2017, 17, 88.	3.3	41
165	Designing continuous flow reaction of xylan hydrolysis for xylooligosaccharides production in packed-bed reactors using xylanase immobilized on methacrylic polymer-based supports. Bioresource Technology, 2018, 266, 249-258.	9.6	41
166	â€~Interfacial affinity chromatography' of lipases: separation of different fractions by selective adsorption on supports activated with hydrophobic groups. BBA - Proteins and Proteomics, 1998, 1388, 337-348.	2.1	40
167	Interaction of the Antitumor Drug 9-Aminoacridine with Guanidinobenzoatase Studied by Spectroscopic Methods: A Possible Tumor Marker Probe Based on the Fluorescence Exciplex Emissionâ€. Biochemistry, 2000, 39, 10557-10565.	2.5	40
168	Mixed Ion Exchange Supports as Useful Ion Exchangers for Protein Purification:Â Purification of Penicillin G Acylase fromEscherichia coli. Biomacromolecules, 2007, 8, 703-707.	5.4	40
169	The co-operative effect of physical and covalent protein adsorption on heterofunctional supports. Process Biochemistry, 2009, 44, 757-763.	3.7	40
170	Characterization and further stabilization of a new anti-prelog specific alcohol dehydrogenase from Thermus thermophilus HB27 for asymmetric reduction of carbonyl compounds. Bioresource Technology, 2012, 103, 343-350.	9.6	40
171	Stabilization of a highly active but unstable alcohol dehydrogenase from yeast using immobilization and post-immobilization techniques. Process Biochemistry, 2012, 47, 679-686.	3.7	40
172	Oxidation of phenyl compounds using strongly stable immobilized-stabilized laccase from Trametes versicolor. Process Biochemistry, 2013, 48, 1174-1180.	3.7	40
173	Enzymatic transformations. Immobilized A. niger epoxide hydrolase as a novel biocatalytic tool for repeated-batch hydrolytic kinetic resolution of epoxidesPart 54. For part 53 see ref. 21 Organic and Biomolecular Chemistry, 2003, 1, 2739.	2.8	39
174	Modulation of the catalytic properties of multimeric β-galactosidase from E. coli by using different immobilization protocols. Enzyme and Microbial Technology, 2007, 40, 310-315.	3.2	39
175	The adsorption of multimeric enzymes on very lowly activated supports involves more enzyme subunits: Stabilization of a glutamate dehydrogenase from Thermus thermophilus by immobilization on heterofunctional supports. Enzyme and Microbial Technology, 2009, 44, 139-144.	3.2	39
176	Release of Omegaâ€3 Fatty Acids by the Hydrolysis of Fish Oil Catalyzed by Lipases Immobilized on Hydrophobic Supports. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 1173-1178.	1.9	39
177	Stabilization of Enzymes by Multipoint Covalent Attachment on Aldehyde-Supports: 2-Picoline Borane as an Alternative Reducing Agent. Catalysts, 2018, 8, 333.	3.5	39
178	Evaluation of the lipase from Bacillus thermocatenulatus as an enantioselective biocatalyst. Tetrahedron: Asymmetry, 2003, 14, 3679-3687.	1.8	38
179	Covalent immobilisation of manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55. Enzyme and Microbial Technology, 2003, 32, 769-775.	3.2	38
180	Overproduction of Thermus sp. Strain T2 β-Galactosidase in Escherichia coli and Preparation by Using Tailor-Made Metal Chelate Supports. Applied and Environmental Microbiology, 2003, 69, 1967-1972.	3.1	38

#	Article	IF	CITATIONS
181	Different Properties of the Lipases Contained in Porcine Pancreatic Lipase Extracts as Enantioselective Biocatalysts. Biotechnology Progress, 2004, 20, 825-829.	2.6	38
182	Immobilization and Stabilization of a Cyclodextrin Glycosyltransferase by Covalent Attachment on Highly Activated Glyoxyl-Agarose Supports. Biotechnology Progress, 2006, 22, 1140-1145.	2.6	38
183	Improved Stabilization of Genetically Modified Penicillin G Acylase in the Presence of Organic Cosolvents by Co- Immobilization of the Enzyme with Polyethyleneimine. Advanced Synthesis and Catalysis, 2007, 349, 459-464.	4.3	38
184	Engineering the D-amino acid oxidase from Trigonopsis variabilis to facilitate its overproduction in Escherichia coli and its downstream processing by tailor-made metal chelate supports. Enzyme and Microbial Technology, 1999, 25, 88-95.	3.2	37
185	Increasing the binding strength of proteins to PEI coated supports by immobilizing at high ionic strength. Enzyme and Microbial Technology, 2005, 37, 295-299.	3.2	37
186	New Cationic Exchanger Support for Reversible Immobilization of Proteins. Biotechnology Progress, 2008, 20, 284-288.	2.6	37
187	Continuous production of xylooligosaccharides in a packed bed reactor with immobilized–stabilized biocatalysts of xylanase from Aspergillus versicolor. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 8-14.	1.8	37
188	Preparation of an Immobilized Lipaseâ€Palladium Artificial Metalloenzyme as Catalyst in the Heck Reaction: Role of the Solid Phase. Advanced Synthesis and Catalysis, 2015, 357, 2687-2696.	4.3	37
189	Modification of the activities of two different lipases from Candida rugosa with dextrans. Enzyme and Microbial Technology, 2002, 30, 30-40.	3.2	36
190	Stabilization–immobilization of carboxypeptidase A to aldehyde–agarose gels. Enzyme and Microbial Technology, 2002, 31, 711-718.	3.2	36
191	Regioselective enzymatic hydrolysis of acetylated pyranoses and pyranosides using immobilised lipases. An easy chemoenzymatic synthesis of α- and β-d-glucopyranose acetates bearing a free secondary C-4 hydroxyl group. Carbohydrate Research, 2002, 337, 1615-1621.	2.3	36
192	Improving the Industrial Production of 6-APA: Enzymatic Hydrolysis of Penicillin G in the Presence of Organic Solvents. Biotechnology Progress, 2003, 19, 1639-1642.	2.6	36
193	Purification and identification of different lipases contained in PPL commercial extracts: A minor contaminant is the main responsible of most esterasic activity. Enzyme and Microbial Technology, 2006, 39, 817-823.	3.2	36
194	Stabilization of Enzymes by Multipoint Covalent Immobilization on Supports Activated with Glyoxyl Groups. Methods in Molecular Biology, 2013, 1051, 59-71.	0.9	36
195	The use of stabilised penicillin acylase derivatives improves the design of kinetically controlled synthesis. Journal of Molecular Catalysis A, 1995, 101, 91-97.	4.8	35
196	Coimmobilization of L-asparaginase and glutamate dehydrogenase onto highly activated supports. Enzyme and Microbial Technology, 2001, 28, 696-704.	3.2	35
197	Reactivation of covalently immobilized lipase from Thermomyces lanuginosus. Process Biochemistry, 2009, 44, 641-646.	3.7	35
198	β-Clucosidase immobilized and stabilized on agarose matrix functionalized with distinct reactive groups. Journal of Molecular Catalysis B: Enzymatic, 2011, 69, 47-53.	1.8	35

#	Article	IF	CITATIONS
199	Immobilization–stabilization of glucoamylase: Chemical modification of the enzyme surface followed by covalent attachment on highly activated glyoxyl-agarose supports. Process Biochemistry, 2011, 46, 409-412.	3.7	35
200	Reactivation of penicillin acylase biocatalysts: Effect of the intensity of enzyme–support attachment and enzyme load. Journal of Molecular Catalysis B: Enzymatic, 2012, 74, 224-229.	1.8	35
201	Biocatalyst engineering of Thermomyces Lanuginosus lipase adsorbed on hydrophobic supports: Modulation of enzyme properties for ethanolysis of oil in solvent-free systems. Journal of Biotechnology, 2019, 289, 126-134.	3.8	35
202	The Science of Enzyme Immobilization. Methods in Molecular Biology, 2020, 2100, 1-26.	0.9	35
203	A controlled fed-batch cultivation for the production of new crude lipases from Candida rugosa with improved properties in fine chemistry. Journal of Biotechnology, 1999, 69, 169-182.	3.8	34
204	Chemo-biocatalytic regioselective one-pot synthesis of different deprotected monosaccharides. Catalysis Today, 2009, 140, 11-18.	4.4	34
205	Selective Ethanolysis of Fish Oil Catalyzed by Immobilized Lipases. JAOCS, Journal of the American Oil Chemists' Society, 2014, 91, 63-69.	1.9	34
206	Modification of Enzyme Properties by the use of Inhibitors During Their Stabilisation by Multipoint Covalent Attachment. Biocatalysis and Biotransformation, 1995, 12, 67-76.	2.0	33
207	Positive effects of the multipoint covalent immobilization in the reactivation of partially inactivated derivatives of lipase from Thermomyces lanuginosus. Enzyme and Microbial Technology, 2009, 44, 386-393.	3.2	33
208	Hydrolysis of Tannic Acid Catalyzed by Immobilizedâ^'Stabilized Derivatives of Tannase from Lactobacillus plantarum. Journal of Agricultural and Food Chemistry, 2010, 58, 6403-6409.	5.2	33
209	Modulation of the Selectivity of Immobilized Lipases by Chemical and Physical Modifications: Release of Omega-3 Fatty Acids from Fish Oil. JAOCS, Journal of the American Oil Chemists' Society, 2012, 89, 97-102.	1.9	32
210	Stabilization of Immobilized Lipases by Intense Intramolecular Cross-Linking of Their Surfaces by Using Aldehyde-Dextran Polymers. International Journal of Molecular Sciences, 2018, 19, 553.	4.1	32
211	Stabilizing effect of penicillin G sulfoxide, a competitive inhibitor of penicillin G acylase: Its practical applications. Enzyme and Microbial Technology, 1991, 13, 210-214.	3.2	31
212	Immobilization of Enzymes as the 21st Century Begins. Methods in Biotechnology, 2006, , 1-13.	0.2	31
213	Highly enantioselective biocatalysts by coating immobilized lipases with polyethyleneimine. Catalysis Communications, 2010, 11, 964-967.	3.3	31
214	Semisynthetic peptide–lipase conjugates for improved biotransformations. Chemical Communications, 2012, 48, 9053.	4.1	31
215	Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases. Chemistry and Physics of Lipids, 2013, 174, 48-54.	3.2	31
216	Enzymatic synthesis of triacylglycerols of docosahexaenoic acid: Transesterification of its ethyl esters with glycerol. Food Chemistry, 2015, 187, 225-229.	8.2	31

#	Article	IF	CITATIONS
217	Resolution of (±)-5-substituted-6-(5-chloropyridin-2-yl)-7-oxo-5,6-dihydropyrrolo[3,4b]pyrazine derivatives-precursors of (S)-(+)-Zopiclone, catalyzed by immobilized Candida antarctica B lipase in aqueous media. Tetrahedron: Asymmetry, 2003, 14, 429-438.	1.8	30
218	Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversible immobilization and stabilization of thermophilic α- and β-galactosidases. Enzyme and Microbial Technology, 2007, 40, 242-248.	3.2	30
219	Partial and enantioselective hydrolysis of diethyl phenylmalonate by immobilized preparations of lipase from Thermomyces lanuginose. Enzyme and Microbial Technology, 2007, 40, 1280-1285.	3.2	30
220	Immobilization–stabilization of an α-galactosidase from Thermus sp. strain T2 by covalent immobilization on highly activated supports: Selection of the optimal immobilization strategy. Enzyme and Microbial Technology, 2008, 42, 265-271.	3.2	30
221	Hydrolysis of Fish Oil by Lipases Immobilized Inside Porous Supports. JAOCS, Journal of the American Oil Chemists' Society, 2011, 88, 819-826.	1.9	30
222	Enzyme immobilization strategies for the design of robust and efficient biocatalysts. Current Opinion in Green and Sustainable Chemistry, 2022, 35, 100593.	5.9	30
223	Directed Covalent Immobilization of Aminated DNA Probes on Aminated Plates. Biomacromolecules, 2004, 5, 883-888.	5.4	29
224	Improved reactivation of immobilized-stabilized lipase from Thermomyces lanuginosus by its coating with highly hydrophilic polymers. Journal of Biotechnology, 2009, 144, 113-119.	3.8	29
225	Enzyme Surface Glycosylation in the Solid Phase: Improved Activity and Selectivity of Candida Antarctica Lipase B. ChemCatChem, 2011, 3, 1902-1910.	3.7	29
226	Immobilization and stabilization of a bimolecular aggregate of the lipase from Pseudomonas fluorescens by multipoint covalent attachment. Process Biochemistry, 2013, 48, 118-123.	3.7	29
227	Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii. Process Biochemistry, 2013, 48, 478-483.	3.7	29
228	Intense PEGylation of Enzyme Surfaces. Methods in Enzymology, 2016, 571, 55-72.	1.0	29
229	Enzyme Stabilization by Multipoint Covalent Attachment to Activated Pre-Existing Supports. Studies in Organic Chemistry, 1993, 47, 55-62.	0.2	29
230	Proteolytic degradation of the RGD-binding and non-RGD-binding conformers of human platelet integrin glycoprotein IIb/IIIa: clues for identification of regions involved in the receptor's activation. Biochemical Journal, 1994, 298, 1-7.	3.7	28
231	Stabilization of the quaternary structure of a hexameric alpha-galactosidase from Thermus sp. T2 by immobilization and post-immobilization techniques. Process Biochemistry, 2008, 43, 193-198.	3.7	28
232	Immobilization of the acylase from Escherichia coli on glyoxyl-agarose gives efficient catalyst for the synthesis of cephalosporins. Enzyme and Microbial Technology, 2008, 42, 121-129.	3.2	28
233	Oriented covalent immobilization of antibodies onto heterofunctional agarose supports: A highly efficient immuno-affinity chromatography platform. Journal of Chromatography A, 2012, 1262, 56-63.	3.7	28
234	New Opportunities for Immobilization of Enzymes. Methods in Molecular Biology, 2013, 1051, 1-13.	0.9	28

#	Article	IF	CITATIONS
235	Immobilization of Proteins on Glyoxyl Activated Supports: Dramatic Stabilization of Enzymes by Multipoint Covalent Attachment on Pre-Existing Supports. Current Organic Chemistry, 2015, 19, 1-1.	1.6	28
236	Penicillin G acylase fromKluyvera citrophila new choice as industrial enzyme. Biotechnology Letters, 1992, 14, 285-290.	2.2	27
237	Modulation of the properties of penicillin G acylase by acyl donor substrates during n-protection of amino compounds. Enzyme and Microbial Technology, 1998, 22, 583-587.	3.2	27
238	Enzymatic synthesis of amoxicillin:Avoiding limitations of the mechanistic approach for reaction kinetics. Biotechnology and Bioengineering, 2002, 80, 622-631.	3.3	27
239	Purification, immobilization and stabilization of a highly enantioselective alcohol dehydrogenase from Thermus thermophilus HB27 cloned in E. coli. Process Biochemistry, 2009, 44, 1004-1012.	3.7	27
240	Clutaraldehyde-Mediated Protein Immobilization. Methods in Molecular Biology, 2013, 1051, 33-41.	0.9	27
241	Reactivation strategies by unfolding/refolding of chymotrypsin derivatives after inactivation by organic solvents. BBA - Proteins and Proteomics, 1997, 1339, 167-175.	2.1	26
242	A Kinetic Study of Synthesis of Amoxicillin Using Penicillin G Acylase Immobilized on Agarose. Applied Biochemistry and Biotechnology, 2000, 84-86, 931-946.	2.9	26
243	Improving the Activity of Lipases from Thermophilic Organisms at Mesophilic Temperatures for Biotechnology Applications. Biomacromolecules, 2004, 5, 249-254.	5.4	26
244	Penicillin G acylase catalyzed acylation of 7-ACA in aqueous two-phase systems using kinetically and thermodynamically controlled strategies: improved enzymatic synthesis of 7-[(1-hydroxy-1-phenyl)-acetamido]-3-acetoxymethyl-Δ3-cephem-4-carboxylic acid. Enzyme and Microbial Technology, 2005, 36, 672-679.	3.2	26
245	Optical fibre biosensors using enzymatic transducers to monitor glucose. Measurement Science and Technology, 2007, 18, 3177-3186.	2.6	26
246	Preparation of linear oligosaccharides by a simple monoprotective chemo-enzymatic approach. Tetrahedron, 2008, 64, 9286-9292.	1.9	26
247	Separation and Immobilization of Lipase from Penicillium simplicissimum by Selective Adsorption on Hydrophobic Supports. Applied Biochemistry and Biotechnology, 2009, 156, 133-145.	2.9	26
248	Synthesis of propyl gallate by transesterification of tannic acid in aqueous media catalysed by immobilised derivatives of tannase from Lactobacillus plantarum. Food Chemistry, 2011, 128, 214-217.	8.2	26
249	Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports. Process Biochemistry, 2012, 47, 2538-2541.	3.7	26
250	Co-localization of oxidase and catalase inside a porous support to improve the elimination of hydrogen peroxide: Oxidation of biogenic amines by amino oxidase from Pisum sativum. Enzyme and Microbial Technology, 2018, 115, 73-80.	3.2	26
251	Turn-on Fluorescent Biosensors for Imaging Hypoxia-like Conditions in Living Cells. Journal of the American Chemical Society, 2022, 144, 8185-8193.	13.7	26
252	Synthesis and modification of polyurethane for immobilization of Thermomyces lanuginosus (TLL) lipase for ethanolysis of fish oil in solvent free system. Journal of Molecular Catalysis B: Enzymatic, 2015. 122. 163-169.	1.8	25

#	Article	IF	CITATIONS
253	Co-immobilization of lipases and β- d -galactosidase onto magnetic nanoparticle supports: Biochemical characterization. Molecular Catalysis, 2018, 453, 12-21.	2.0	25
254	Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Applied Microbiology and Biotechnology, 2018, 102, 773-787.	3.6	25
255	Selective and mild adsorption of large proteins on lowly activated immobilized metal ion affinity chromatography matrices. Journal of Chromatography A, 2004, 1055, 93-98.	3.7	24
256	Reversible immobilization of a hexameric α-galactosidase from Thermus sp. strain T2 on polymeric ionic exchangers. Process Biochemistry, 2008, 43, 1142-1146.	3.7	24
257	Oriented Covalent Immobilization of Antibodies on Physically Inert and Hydrophilic Support Surfaces through Their Glycosidic Chains. Biomacromolecules, 2008, 9, 719-723.	5.4	24
258	Complete reactivation of immobilized derivatives of a trimeric glutamate dehydrogenase from Thermus thermophillus. Process Biochemistry, 2010, 45, 107-113.	3.7	24
259	Single-step purification of different lipases from Staphylococcus warneri. Journal of Chromatography A, 2010, 1217, 473-478.	3.7	24
260	Immobilization and biochemical properties of a β-xylosidase activated by glucose/xylose from Aspergillus niger USP-67 with transxylosylation activity. Journal of Molecular Catalysis B: Enzymatic, 2013, 89, 93-101.	1.8	24
261	Immobilization and high stability of an extracellular β-glucosidase from Aspergillus japonicus by ionic interactions. Journal of Molecular Catalysis B: Enzymatic, 2014, 104, 95-100.	1.8	24
262	Covalent immobilization-stabilization of β-1,4-endoxylanases from Trichoderma reesei : Production of xylooligosaccharides. Process Biochemistry, 2018, 64, 170-176.	3.7	24
263	Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. International Journal of Biological Macromolecules, 2020, 157, 510-521.	7.5	24
264	Immobilization-Stabilization of Thermolysin Onto Activated Agarose Gels. Biocatalysis and Biotransformation, 1997, 15, 159-173.	2.0	23
265	Immobilization of Rennet fromMucormieheivia Its Sugar Chain. Its Use in Milk Coagulation. Biomacromolecules, 2004, 5, 2029-2033.	5.4	23
266	Optimization of the modification of carrier proteins with aminated haptens. Journal of Immunological Methods, 2005, 307, 144-149.	1.4	23
267	Purification, stabilization, and concentration of very weak protein-protein complexes: Shifting the association equilibrium via complex selective adsorption on lowly activated supports. Proteomics, 2005, 5, 4062-4069.	2.2	23
268	Solid phase proteomics: Dramatic reinforcement of very weak protein–protein interactions. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2007, 849, 243-250.	2.3	23
269	Reversible Immobilization of Glutaryl Acylase on Sepabeads Coated with Polyethyleneimine. Biotechnology Progress, 2008, 20, 533-536.	2.6	23
270	Kinetically controlled synthesis of monoglyceryl esters from chiral and prochiral acids methyl esters catalyzed by immobilized Rhizomucor miehei lipase. Bioresource Technology, 2011, 102, 507-512.	9.6	23

#	Article	IF	CITATIONS
271	Immobilized lipase from Hypocrea pseudokoningii on hydrophobic and ionic supports: Determination of thermal and organic solvent stabilities for applications in the oleochemical industry. Process Biochemistry, 2015, 50, 561-570.	3.7	23
272	Immobilizing Systems Biocatalysis for the Selective Oxidation of Glycerol Coupled to Inâ€Situ Cofactor Recycling and Hydrogen Peroxide Elimination. ChemCatChem, 2015, 7, 1939-1947.	3.7	23
273	Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 2015, 121, 82-89.	1.8	23
274	Production of new nanobiocatalysts via immobilization of lipase B from C. antarctica on polyurethane nanosupports for application on food and pharmaceutical industries. International Journal of Biological Macromolecules, 2020, 165, 2957-2963.	7.5	23
275	Oriented immobilization of antibodies through different surface regions containing amino groups: Selective immobilization through the bottom of the Fc region. International Journal of Biological Macromolecules, 2021, 177, 19-28.	7.5	23
276	Regioselective hydrolysis of peracetylated α-D-glucopyranose catalyzed by immobilized lipases in aqueous medium. A facile preparation of useful intermediates for oligosaccharide synthesis. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 633-636.	2.2	22
277	Detection of Polyclonal Antibody Against Any Area of the Protein-Antigen Using Immobilized Protein-Antigens: The Critical Role of the Immobilization Protocol. Biomacromolecules, 2006, 7, 540-544.	5.4	22
278	Changes on enantioselectivity of a genetically modified thermophilic lipase by site-directed oriented immobilization. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 121-127.	1.8	22
279	Optical Control of Enzyme Enantioselectivity in Solid Phase. ACS Catalysis, 2014, 4, 1004-1009.	11.2	22
280	Immobilization of Lipase from Penicillium sp. Section Gracilenta (CBMAI 1583) on Different Hydrophobic Supports: Modulation of Functional Properties. Molecules, 2017, 22, 339.	3.8	22
281	Supports coated with PEI as a new tool in chromatography. Enzyme and Microbial Technology, 2006, 39, 711-716.	3.2	21
282	Hydrolysis of fish oil by hyperactivated <i>rhizomucor miehei</i> lipase immobilized by multipoint anion exchange. Biotechnology Progress, 2011, 27, 961-968.	2.6	21
283	Altering the Interfacial Activation Mechanism of a Lipase by Solid-Phase Selective Chemical Modification. Biochemistry, 2012, 51, 7028-7036.	2.5	21
284	Preparation of Lipase-Coated, Stabilized, Hydrophobic Magnetic Particles for Reversible Conjugation of Biomacromolecules. Biomacromolecules, 2013, 14, 602-607.	5.4	21
285	Oneâ€step Synthesis of αâ€Keto Acids from Racemic Amino Acids by A Versatile Immobilized Multienzyme Cellâ€free System. ChemCatChem, 2018, 10, 3002-3011.	3.7	21
286	Enantioselective enzymatic hydrolysis of racemic glycidyl esters by using immobilized porcine pancreas lipase with improved catalytic properties. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 757-763.	1.8	20
287	Detection and purification of two antibody–antigen complexes via selective adsorption on lowly activated anion exchangers. Journal of Chromatography A, 2004, 1059, 89-94.	3.7	20
288	Preparation of a very stable immobilized Solanum tuberosum epoxide hydrolase. Tetrahedron: Asymmetry, 2007, 18, 1233-1238.	1.8	20

#	Article	IF	CITATIONS
289	Enzymatic synthesis of cephalosporins. The immobilized acylase from Arthrobacter viscosus: A new useful biocatalyst. Applied Microbiology and Biotechnology, 2007, 77, 579-587.	3.6	20
290	Influence of mass transfer limitations on the enzymatic synthesis of β-lactam antibiotics catalyzed by penicillin G acylase immobilized on glioxil-agarose. Bioprocess and Biosystems Engineering, 2008, 31, 411-418.	3.4	20
291	Modulation of a lipase from Staphylococcus warneri EX17 using immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 2009, 60, 125-132.	1.8	20
292	Simple strategy of reactivation of a partially inactivated penicillin g acylase biocatalyst in organic solvent and its impact on the synthesis of βâ€lactam antibiotics. Biotechnology and Bioengineering, 2009, 103, 472-479.	3.3	20
293	Tips for the Functionalization of Nanoparticles with Antibodies. Methods in Molecular Biology, 2013, 1051, 149-163.	0.9	20
294	Enhanced stability of l -lactate dehydrogenase through immobilization engineering. Process Biochemistry, 2016, 51, 1248-1255.	3.7	20
295	Improving enantioselectivity of lipase from Candida rugosa by carrier-bound and carrier-free immobilization. Journal of Molecular Catalysis B: Enzymatic, 2016, 130, 32-39.	1.8	20
296	Sugarcane Bagasse Saccharification by Enzymatic Hydrolysis Using Endocellulase and β-glucosidase Immobilized on Different Supports. Catalysts, 2021, 11, 340.	3.5	20
297	Stabilization of Trypsin by Multiple-Point Attachment to Aldehyde-Agarose Gels. Annals of the New York Academy of Sciences, 1987, 501, 67-72.	3.8	19
298	Essential role of the concentration of immobilized ligands in affinity chromatography:. Biomedical Applications, 2000, 740, 211-218.	1.7	19
299	The role of 6-aminopenicillanic acid on the kinetics of amoxicillin enzymatic synthesis catalyzed by penicillin G acylase immobilized onto glyoxyl-agarose. Enzyme and Microbial Technology, 2002, 31, 464-471.	3.2	19
300	Regioselective monohydrolysis of per-O-acetylated-1-substituted-β-glucopyranosides catalyzed by immobilized lipases. Tetrahedron, 2008, 64, 10721-10727.	1.9	19
301	Medium engineering on modified Geobacillus thermocatenulatus lipase to prepare highly active catalysts. Journal of Molecular Catalysis B: Enzymatic, 2011, 70, 144-148.	1.8	19
302	trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling. Organic and Biomolecular Chemistry, 2011, 9, 5535.	2.8	19
303	Improving Properties of a Novel β-Galactosidase from Lactobacillus plantarum by Covalent Immobilization. Molecules, 2015, 20, 7874-7889.	3.8	19
304	Hydrophobic adsorption in ionic medium improves the catalytic properties of lipases applied in the triacylglycerol hydrolysis by synergism. Bioprocess and Biosystems Engineering, 2016, 39, 1933-1943.	3.4	19
305	Immobilization Effects on the Catalytic Properties of Two Fusarium Verticillioides Lipases: Stability, Hydrolysis, Transesterification and Enantioselectivity Improvement. Catalysts, 2018, 8, 84.	3.5	19
306	Thermotolerant lipase from Penicillium sp. section Gracilenta CBMAI 1583: Effect of carbon sources on enzyme production, biochemical properties of crude and purified enzyme and substrate specificity. Biocatalysis and Agricultural Biotechnology, 2019, 17, 15-24.	3.1	19

#	Article	IF	CITATIONS
307	Stabilization of a tetrameric enzyme (α-amino acid ester hydrolase from Acetobacter turbidans) enables a very improved performance of ampicillin synthesis. Journal of Molecular Catalysis B: Enzymatic, 2001, 11, 633-638.	1.8	18
308	Unusual enzymatic resolution of (±)-glycidyl-butyrate for the production of (S)-glycidyl derivatives. Enzyme and Microbial Technology, 2006, 38, 429-435.	3.2	18
309	Glutaraldehyde in Protein Immobilization. Methods in Biotechnology, 2006, , 57-64.	0.2	18
310	Asymmetric hydrolysis of dimethyl 3-phenylglutarate catalyzed by Lecitase Ultra®. Enzyme and Microbial Technology, 2008, 43, 531-536.	3.2	18
311	Different derivatives of a lipase display different regioselectivity in the monohydrolysis of per-O-acetylated 1-O-substituted-β-galactopyranosides. Journal of Molecular Catalysis B: Enzymatic, 2009, 58, 36-40.	1.8	18
312	Protein hydrolysis by immobilized and stabilized trypsin. Biotechnology Progress, 2011, 27, 677-683.	2.6	18
313	Site-directing an intense multipoint covalent attachment (MCA) of mutants of the Geobacillus thermocatenulatus lipase 2 (BTL2): Genetic and chemical amination plus immobilization on a tailor-made support. Process Biochemistry, 2014, 49, 1324-1331.	3.7	18
314	Improving the Thermostability and Optimal Temperature of a Lipase from the Hyperthermophilic Archaeon <i>Pyrococcus furiosus</i> by Covalent Immobilization. BioMed Research International, 2015, 2015, 1-8.	1.9	18
315	Stabilization by multipoint covalent attachment of a biocatalyst with polygalacturonase activity used for juice clarification. Food Chemistry, 2016, 208, 252-257.	8.2	18
316	Biobased, Internally pH-Sensitive Materials: Immobilized Yellow Fluorescent Protein as an Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Matrices. ACS Applied Materials & Interfaces, 2018, 10, 6858-6868.	8.0	18
317	Preparation of a robust immobilized biocatalyst of β-1,4-endoxylanase by surface coating with polymers for production of xylooligosaccharides from different xylan sources. New Biotechnology, 2018, 44, 50-58.	4.4	18
318	Self-sufficient asymmetric reduction of β-ketoesters catalysed by a novel and robust thermophilic alcohol dehydrogenase co-immobilised with NADH. Catalysis Science and Technology, 2021, 11, 3217-3230.	4.1	18
319	Enzyme reaction engineering: Design of peptide synthesis by stabilized trypsin. Enzyme and Microbial Technology, 1991, 13, 573-583.	3.2	17
320	Resolution of racemic mixtures by synthesis reactions catalyzed by immobilized derivatives of the enzyme penicillin G acylase. Journal of Molecular Catalysis, 1993, 84, 365-371.	1.2	17
321	Stabilization of a β-glucosidase from Aspergillus niger by binding to an amine agarose gel. Journal of Molecular Catalysis B: Enzymatic, 2000, 11, 63-69.	1.8	17
322	A Simple Strategy for the Purification of Large Thermophilic Proteins Overexpressed in Mesophilic Microorganisms: Application to Multimeric Enzymes from Thermus sp. Strain T2 Expressed in Escherichia coli. Biotechnology Progress, 2004, 20, 1507-1511.	2.6	17
323	Co-immobilization and stabilization of xylanase, β-xylosidase and α-l-arabinofuranosidase from Penicillium janczewskii for arabinoxylan hydrolysis. Process Biochemistry, 2016, 51, 614-623.	3.7	17
324	Critical Role of Different Immobilized Biocatalysts of a Given Lipase in the Selective Ethanolysis of Sardine Oil. Journal of Agricultural and Food Chemistry, 2017, 65, 117-122.	5.2	17

#	Article	IF	CITATIONS
325	High stabilization of immobilized Rhizomucor miehei lipase by additional coating with hydrophilic crosslinked polymers: Poly-allylamine/Aldehyde–dextran. Process Biochemistry, 2020, 92, 156-163.	3.7	17
326	Influence of activation on the multipoint immobilization of penicillin G acylase on macroporous silica. Brazilian Journal of Chemical Engineering, 1999, 16, 141-148.	1.3	17
327	Determination of intrinsic properties of immobilized enzymes. Applied Biochemistry and Biotechnology, 1981, 6, 25-36.	2.9	16
328	Simple Purification of Immunoglobulins from Whey Proteins Concentrate. Biotechnology Progress, 2006, 22, 590-594.	2.6	16
329	A chemo-biocatalytic approach in the synthesis of β-O-naphtylmethyl-N-peracetylated lactosamine. Journal of Molecular Catalysis B: Enzymatic, 2008, 52-53, 106-112.	1.8	16
330	Immobilization of antibodies through the surface regions having the highest density in lysine groups on finally inert support surfaces. Process Biochemistry, 2009, 44, 365-368.	3.7	16
331	Effect of ionic liquids as additives in the catalytic properties of different immobilized preparations of Rhizomucor miehei lipase in the hydrolysis of peracetylated lactal. Green Chemistry, 2010, 12, 1365.	9.0	16
332	Immobilisation and stabilisation of β-galactosidase from Kluyveromyces lactis using a glyoxyl support. International Dairy Journal, 2013, 28, 76-82.	3.0	16
333	Two-Photon Fluorescence Anisotropy Imaging to Elucidate the Dynamics and the Stability of Immobilized Proteins. Journal of Physical Chemistry B, 2016, 120, 485-491.	2.6	16
334	Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzyme and Microbial Technology, 2017, 105, 51-58.	3.2	16
335	Production of Omegas-6 and 9 from the Hydrolysis of AçaÃ-and Buriti Oils by Lipase Immobilized on a Hydrophobic Support. Molecules, 2018, 23, 3015.	3.8	16
336	Synthesis of omega-3 ethyl esters from chia oil catalyzed by polyethylene glycol-modified lipases with improved stability. Food Chemistry, 2019, 271, 433-439.	8.2	16
337	Functionalization of Porous Cellulose with Glyoxyl Groups as a Carrier for Enzyme Immobilization and Stabilization. Biomacromolecules, 2021, 22, 927-937.	5.4	16
338	Determination of intrinsic properties of immobilized enzymes. Applied Biochemistry and Biotechnology, 1981, 6, 37-51.	2.9	15
339	Organic reactions catalyzed by insolubilized enzymes; i-peptide synthesis catalyzed by insolubilized α-chymotrypsin. Journal of Molecular Catalysis, 1990, 62, 93-105.	1.2	15
340	Adsorption Behavior of Bovine Serum Albumin on Lowly Activated Anionic Exchangers Suggests a New Strategy for Solid-Phase Proteomics. Biomacromolecules, 2006, 7, 1357-1361.	5.4	15
341	Oriented irreversible immobilization of a glycosylated Candida antarctica B lipase on heterofunctional organoborane-aldehyde support. Catalysis Science and Technology, 2011, 1, 260.	4.1	15
342	Regioselective Deprotection of Peracetylated Disaccharides at the Primary Position Catalyzed by Immobilized Acetyl Xylan Esterase from <i>Bacillus pumilus</i> . European Journal of Organic Chemistry, 2011, 2011, 6181-6185.	2.4	15

#	Article	IF	CITATIONS
343	Sequential hydrolysis of commercial casein hydrolysate by immobilized trypsin and thermolysin to produce bioactive phosphopeptides. Biocatalysis and Biotransformation, 2018, 36, 159-171.	2.0	15
344	Fine Modulation of the Catalytic Properties of Rhizomucor miehei Lipase Driven by Different Immobilization Strategies for the Selective Hydrolysis of Fish Oil. Molecules, 2020, 25, 545.	3.8	15
345	Resolution of paroxetine precursor using different lipases. Enzyme and Microbial Technology, 2004, 34, 264-269.	3.2	14
346	Preparation of an immobilized–stabilized catalase derivative from Aspergillus niger having its multimeric structure stabilized: The effect of Zn2+ on enzyme stability. Journal of Molecular Catalysis B: Enzymatic, 2008, 55, 142-145.	1.8	14
347	Selective adsorption of small proteins on large-pore anion exchangers coated with medium size proteins. Colloids and Surfaces B: Biointerfaces, 2010, 78, 140-145.	5.0	14
348	Reactivation of a thermostable lipase by solid phase unfolding/refolding. Enzyme and Microbial Technology, 2011, 49, 388-394.	3.2	14
349	Dramatic hyperactivation of lipase of Thermomyces lanuginosa by a cationic surfactant: Fixation of the hyperactivated form by adsorption on sulfopropyl-sepharose. Journal of Molecular Catalysis B: Enzymatic, 2015, 122, 199-203.	1.8	14
350	Production of omega-3 polyunsaturated fatty acids through hydrolysis of fish oil by Candida rugosa lipase immobilized and stabilized on different supports. Biocatalysis and Biotransformation, 2017, 35, 63-73.	2.0	14
351	Immobilization and stabilization of commercial β-1,4-endoxylanase Depol™ 333MDP by multipoint covalent attachment for xylan hydrolysis: Production of prebiotics (xylo-oligosaccharides). Biocatalysis and Biotransformation, 2018, 36, 141-150.	2.0	14
352	Multiplex environmental pollutant analysis using an array biosensor coated with chimeric hapten-dextran-lipase constructs. Sensors and Actuators B: Chemical, 2018, 257, 256-262.	7.8	14
353	Immobilization of Lipases by Adsorption on Hydrophobic Supports: Modulation of Enzyme Properties in Biotransformations in Anhydrous Media. Methods in Molecular Biology, 2020, 2100, 143-158.	0.9	14
354	Heterogeneous Enzyme Kinetics. , 2008, , 155-203.		14
355	Novel enzyme-polymer conjugates for biotechnological applications. PeerJ, 2013, 1, e27.	2.0	14
356	Stabilization of enzymes by multipoint attachment via reversible immobilization on phenylboronic activated supports. Journal of Biotechnology, 2005, 120, 396-401.	3.8	13
357	Disulfide Engineered Lipase to Enhance the Catalytic Activity: A Structure-Based Approach on BTL2. International Journal of Molecular Sciences, 2019, 20, 5245.	4.1	13
358	High Stabilization of Enzymes Immobilized on Rigid Hydrophobic Glyoxyl-Supports: Generation of Hydrophilic Environments on Support Surfaces. Catalysts, 2020, 10, 676.	3.5	13
359	A mild intensity of the enzyme-support multi-point attachment promotes the optimal stabilization of mesophilic multimeric enzymes: Amine oxidase from Pisum sativum. Journal of Biotechnology, 2020, 318, 39-44.	3.8	13
360	Dextran-coated nanoparticles as immunosensing platforms: Consideration of polyaldehyde density, nanoparticle size and functionality. Talanta, 2022, 247, 123549.	5.5	13

#	Article	IF	CITATIONS
361	Inhibitory effects in the side reactions occurring during the enzymic synthesis of amoxicillin: p-hydroxyphenylglycine methyl ester and amoxicillin hydrolysis. Biotechnology and Applied Biochemistry, 2003, 38, 77.	3.1	12
362	Enantioselective Synthesis of Phenylacetamides in the Presence of High Organic Cosolvent Concentrations Catalyzed by Stabilized Penicillin G Acylase. Effect of the Acyl Donor. Biotechnology Progress, 2004, 20, 984-988.	2.6	12
363	Screening of lipases for regioselective hydrolysis of peracetylated β-monosaccharides. Journal of Molecular Catalysis B: Enzymatic, 2007, 49, 12-17.	1.8	12
364	Purification, immobilization, and characterization of a specific lipase from <i>Staphylococcus warneri</i> EX17 by enzyme fractionating via adsorption on different hydrophobic supports. Biotechnology Progress, 2011, 27, 717-723.	2.6	12
365	Improvement of fungal arabinofuranosidase thermal stability by reversible immobilization. Process Biochemistry, 2012, 47, 2411-2417.	3.7	12
366	Co-immobilization of fungal endo-xylanase and Â-L-arabinofuranosidase in glyoxyl agarose for improved hydrolysis of arabinoxylan. Journal of Biochemistry, 2013, 154, 275-280.	1.7	12
367	Engineering the Substrate Specificity of a Thermophilic Penicillin Acylase from Thermus thermophilus. Applied and Environmental Microbiology, 2013, 79, 1555-1562.	3.1	12
368	Useful Oriented Immobilization of Antibodies on Chimeric Magnetic Particles: Direct Correlation of Biomacromolecule Orientation with Biological Activity by AFM Studies. Langmuir, 2014, 30, 15022-15030.	3.5	12
369	Solid-phase amination of Geotrichum candidum lipase: ionic immobilization, stabilization and fish oil hydrolysis for the production of Omega-3 polyunsaturated fatty acids. European Food Research and Technology, 2017, 243, 1375-1384.	3.3	12
370	Development of a high efficient biocatalyst by oriented covalent immobilization of a novel recombinant 2′- N -deoxyribosyltransferase from Lactobacillus animalis. Journal of Biotechnology, 2018, 270, 39-43.	3.8	12
371	Multi-Point Covalent Immobilization of Enzymes on Supports Activated with Epoxy Groups: Stabilization of Industrial Enzymes. Methods in Molecular Biology, 2020, 2100, 109-117.	0.9	12
372	Immobilization of Enzymes on Monofunctional and Heterofunctional Epoxy-Activated Supports. Methods in Molecular Biology, 2013, 1051, 43-57.	0.9	12
373	Use of an Antisense RNA Strategy To Investigate the Functional Significance of Mn-Catalase in the Extreme Thermophile Thermus thermophilus. Journal of Bacteriology, 2004, 186, 7804-7806.	2.2	11
374	Production of a Thermoresistant Alpha-galactosidase fromThermussp. Strain T2 for Food Processing. Food Biotechnology, 2007, 21, 91-103.	1.5	11
375	Thermodynamically Controlled Synthesis of Amide Bonds Catalyzed by Highly Organic Solvent-Resistant Penicillin Acylase Derivatives. Biotechnology Progress, 2008, 20, 117-121.	2.6	11
376	Improving Lipase Activity by Immobilization and Post-immobilization Strategies. Methods in Molecular Biology, 2013, 1051, 255-273.	0.9	11
377	Characterization of a tannase from Emericela nidulans immobilized on ionic and covalent supports for propyl gallate synthesis. Biotechnology Letters, 2013, 35, 591-598.	2.2	11
378	Multi-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Stabilization of Industrial Enzymes. Methods in Molecular Biology, 2020, 2100, 93-107.	0.9	11

#	Article	IF	CITATIONS
379	Mixed Enzymic Reaction—Internal Diffusion Kinetics of Nonuniformly Distributed Immobilized Enzymes. Applied Biochemistry and Biotechnology, 1987, 14, 49-72.	2.9	10
380	The equilibrium and kinetics ofN-acetyl-tryptophan phenylethyl ester synthesis by agarose-chymotrypsin in organic media. Biotechnology and Bioengineering, 1992, 40, 1092-1096.	3.3	10
381	Lipaseâ€Catalyzed Regioselective Oneâ€Step Synthesis of Pentaâ€≺i>Oâ€acetylâ€3â€hydroxylactal. Europea Journal of Organic Chemistry, 2009, 2009, 3327-3329.	n 2.4	10
382	Different Strategies for Hyperactivation of Lipase Biocatalysts. Methods in Molecular Biology, 2012, 861, 329-341.	0.9	10
383	Purification and improvement of the functional properties of Rhizopus oryzae lipase using immobilization techniques. Journal of Molecular Catalysis B: Enzymatic, 2014, 110, 111-116.	1.8	10
384	β-xylosidase from <i>Selenomonas ruminantium</i> : Immobilization, stabilization, and application for xylooligosaccharide hydrolysis. Biocatalysis and Biotransformation, 2016, 34, 161-171.	2.0	10
385	Biosynthesis of an antiviral compound using a stabilized phosphopentomutase by multipoint covalent immobilization. Journal of Biotechnology, 2017, 249, 34-41.	3.8	10
386	Influence of different immobilization techniques to improve the enantioselectivity of lipase from Geotrichum candidum applied on the resolution of mandelic acid. Molecular Catalysis, 2018, 458, 89-96.	2.0	10
387	Stabilization of Multimeric Enzymes via Immobilization and Further Cross-Linking with Aldehyde-Dextran. Methods in Molecular Biology, 2020, 2100, 175-187.	0.9	10
388	Oriented Covalent Immobilization of Enzymes on Heterofunctional-Glyoxyl Supports. Methods in Molecular Biology, 2013, 1051, 73-88.	0.9	10
389	Immobilization-Stabilization of Penicillin G Acylase Annals of the New York Academy of Sciences, 1990, 613, 552-558.	3.8	9
390	Effect of thermodynamic water activity on amino-acid ester synthesis catalyzed by agarose-chymotrypsin in 3-pentanone. Biochimica Et Biophysica Acta - General Subjects, 1992, 1156, 67-70.	2.4	9
391	Aldehyde–dextran–protein conjugates to immobilize amino-haptens: avoiding cross-reactions in the immunodetection. Enzyme and Microbial Technology, 2005, 36, 510-513.	3.2	9
392	Partial Purification and Immobilization/Stabilization on Highly Activated Glyoxyl-agarose Supports of Different Proteases from Flavourzyme. Journal of Agricultural and Food Chemistry, 2007, 55, 6503-6508.	5.2	9
393	Asymmetric hydrolysis of dimethyl phenylmalonate by immobilized penicillin G acylase from E. coli. Enzyme and Microbial Technology, 2007, 40, 997-1000.	3.2	9
394	Production of Hesperetin Using a Covalently Multipoint Immobilized Diglycosidase from <i>Acremonium</i> sp. DSM24697. Journal of Molecular Microbiology and Biotechnology, 2013, 23, 410-417.	1.0	9
395	Dextran–Lipase Conjugates as Tools for Low Molecular Weight Ligand Immobilization in Microarray Development. Analytical Chemistry, 2013, 85, 7060-7068.	6.5	9
396	Enzymatic transesterification in a solvent-free system: synthesis of sn-2 docosahexaenoyl monoacylglycerol. Biocatalysis and Biotransformation, 2018, 36, 265-270.	2.0	9

#	Article	IF	CITATIONS
397	Organic reactions catalyzed by insolubilized enzymes. Journal of Molecular Catalysis, 1990, 62, 353-367.	1.2	8
398	Syntheses of pharmaceutical oligosaccharides catalyzed by immobilized-stabilized derivatives of different β-galactosidases. Journal of Molecular Catalysis, 1993, 84, 373-379.	1.2	8
399	Purification of a Catalase from Thermus thermophilus via IMAC Chromatography: Effect of the Support. Biotechnology Progress, 2004, 20, 1578-1582.	2.6	8
400	Very Strong But Reversible Immobilization of Enzymes on Supports Coated With Ionic Polymers. Methods in Biotechnology, 2006, , 205-216.	0.2	8
401	Full enzymatic hydrolysis of commercial sucrose laurate by immobilized-stabilized derivatives of lipase from Thermomyces lanuginosa. Colloids and Surfaces B: Biointerfaces, 2011, 84, 556-560.	5.0	8
402	Hydrolysis and oxidation of racemic esters into prochiral ketones catalyzed by a consortium of immobilized enzymes. Biochemical Engineering Journal, 2016, 112, 136-142.	3.6	8
403	Co-Immobilization and Co-Localization of Multi-Enzyme Systems on Porous Materials. Methods in Molecular Biology, 2020, 2100, 297-308.	0.9	8
404	Purification, Immobilization, Hyperactivation, and Stabilization of Lipases by Selective Adsorption on Hydrophobic Supports. Methods in Biotechnology, 2006, , 143-152.	0.2	7
405	Crystallization and preliminary X-ray diffraction studies of the BTL2 lipase from the extremophilic microorganism <i>Bacillus thermocatenulatus</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1043-1045.	0.7	7
406	Improved purification and enzymatic properties of a mixture of Sticholysin I and II: Isotoxins with hemolytic and phospholipase A2 activities from the sea anemone Stichodactyla helianthus. Protein Expression and Purification, 2014, 95, 57-66.	1.3	7
407	Immobilization and Stabilization of Beta-Xylosidases from Penicillium janczewskii. Applied Biochemistry and Biotechnology, 2017, 182, 349-366.	2.9	7
408	Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain. Catalysts, 2020, 10, 810.	3.5	7
409	Stabilization of Glycosylated Î ² -Glucosidase by Intramolecular Crosslinking Between Oxidized Glycosidic Chains and Lysine Residues. Applied Biochemistry and Biotechnology, 2020, 192, 325-337.	2.9	7
410	A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. Biotechnology and Bioengineering, 1998, 58, 486-493.	3.3	7
411	Immobilization of Enzymes on Supports Activated with Glutaraldehyde: A Very Simple Immobilization Protocol. Methods in Molecular Biology, 2020, 2100, 119-127.	0.9	7
412	Affinity chromatography of plasma proteins (guanidinobenzoatase): use of mimetic matrices and mimetic soluble ligands to prevent the binding of albumin on target affinity matrices. Biomedical Applications, 1999, 732, 165-172.	1.7	6
413	Use of polyvalent cations to improve the adsorption strength between adsorbed enzymes and supports coated with dextran sulfate. Enzyme and Microbial Technology, 2006, 39, 332-336.	3.2	6
414	Different Covalent Immobilizations Modulate Lipase Activities of Hypocrea pseudokoningii. Molecules, 2017, 22, 1448.	3.8	6

#	Article	IF	CITATIONS
415	Ethyl esters production catalyzed by immobilized lipases is influenced by n-hexane and ter-amyl alcohol as organic solvents. Bioprocess and Biosystems Engineering, 2020, 43, 2107-2115.	3.4	6
416	Capture of enzyme aggregates by covalent immobilization on solid supports. Relevant stabilization of enzymes by aggregation. Journal of Biotechnology, 2021, 325, 138-144.	3.8	6
417	Engineering of Enzymes via Immobili-zation and Post-Immobilization Techniques: Preparation of Enzyme Derivatives with Improved Stability in Organic Media. , 2000, , 36-51.		6
418	Stabilization of Multimeric Enzymes Via Immobilization and Further Cross-Linking With Aldehyde-Dextran. Methods in Biotechnology, 2006, , 129-141.	0.2	5
419	Study Cases of Enzymatic Processes. , 2008, , 253-378.		5
420	Immobilization of Enzymes on Hetero-Functional Supports: Physical Adsorption Plus Additional Covalent Immobilization. Methods in Molecular Biology, 2020, 2100, 159-174.	0.9	5
421	Resolution of Racemic Mixtures through Stereospecific Kinetically Controlled Synthesis Catalyzed by Penicillin G Acylase Derivatives. Annals of the New York Academy of Sciences, 1995, 750, 425-428.	3.8	4
422	Title is missing!. Biotechnology Letters, 1998, 20, 57-61.	2.2	4
423	Stabilization of an Amylase fromNeurospora crassaby Immobilization on Highly Activated Supports. Food Biotechnology, 2008, 22, 262-275.	1.5	4
424	Optimizing the biological activity of Fab fragments by controlling their molecular orientation and spatial distribution across porous hydrogels. Process Biochemistry, 2015, 50, 1565-1571.	3.7	4
425	Stabilization of β-Gal-3 ATCC 31382 on agarose gels: synthesis of β-(1→3) galactosides under sustainable conditions. RSC Advances, 2016, 6, 79554-79562.	3.6	4
426	Rational design and synthesis of affinity matrices based on proteases immobilized onto cellulose membranes. Preparative Biochemistry and Biotechnology, 2017, 47, 745-753.	1.9	4
427	Modeling and experimental validation of covalent immobilization of <i>Trametes maxima</i> laccase on glyoxyl and MANA epharose CL 4B supports, for the use in bioconversion of residual colorants. Biotechnology and Applied Biochemistry, 2022, 69, 479-491.	3.1	4
428	Partial purification, immobilization and preliminary biochemical characterization of lipases from Rhizomucor pusillus. Advances in Enzyme Research, 2013, 01, 79-90.	1.6	4
429	Peptide synthesis by stabilized trypsin: Industrial kinetic studies under extreme experimental conditions. Journal of Molecular Catalysis, 1992, 73, 97-113.	1.2	3
430	Design of Novel Biocatalysts by "Bioimprinting" during Unfolding-Refolding of Fully Dispersed Covalently Immobilized Enzymes. Annals of the New York Academy of Sciences, 1995, 750, 349-356.	3.8	3
431	Stabilization of immobilized enzymes against organic solvents: Complete hydrophylization of enzymes environments by solidphase chemistry with poly-functional macromolecules Progress in Biotechnology, 1998, , 405-410.	0.2	3
432	One-Step Purification, Immobilization, and Stabilization of Poly-Histidine-Tagged Enzymes Using Metal Chelate-Epoxy Supports. Methods in Biotechnology, 2006, , 117-128.	0.2	3

#	Article	IF	CITATIONS
433	Highly improved enzymatic peptide synthesis by using biphasic reactors. Biocatalysis and Biotransformation, 2018, 36, 271-278.	2.0	3
434	Modeling and Experimental Validation of Algorithms for Maximum Quantity of Protein to be Immobilized on Solid Supports by Electrostatic Adsorption in the Strategy of Rational Design of Immobilized Derivatives. Protein Journal, 2021, 40, 576-588.	1.6	3
435	One-Point Covalent Immobilization of Enzymes on Glyoxyl Agarose with Minimal Physico-Chemical Modification: Immobilized "Native Enzymes― Methods in Molecular Biology, 2020, 2100, 83-92.	0.9	3
436	Immobilization of Yarrowia lipolytica Lipase—A Comparison of Stability of Physical Adsorption and Covalent Attachment Techniques. , 2007, , 169-176.		3
437	Utilization of Unfolding/Refolding Strategies for Reactivation of Immobilized Derivatives of Lipases after Inactivation by Organic Solvents. , 1996, , 257-271.		3
438	Immobilization of a recombinant endo-1,5-arabinanase secreted by Aspergillus nidulans strain A773. Journal of Molecular Catalysis B: Enzymatic, 2012, , .	1.8	2
439	Synthesis of sn-2 docosahexaenoyl monoacylglycerol by mild enzymatic transesterification of docosahexaenoic acid ethyl ester and glycerol in a solvent-free system. Cogent Food and Agriculture, 2016, 2, .	1.4	2
440	Functional Characterization and Structural Analysis of NADH Oxidase Mutants from Thermus thermophilus HB27: Role of Residues 166, 174, and 194 in the Catalytic Properties and Thermostability. Microorganisms, 2019, 7, 515.	3.6	2
441	Screening and Immobilization of Interfacial Esterases from Marine Invertebrates as Promising Biocatalyst Derivatives. Applied Biochemistry and Biotechnology, 2019, 189, 903-918.	2.9	2
442	Improved Stabilization of Chemically Aminated Enzymes Via Multipoint Covalent Attachment on Glyoxyl Supports. Methods in Biotechnology, 2006, , 163-173.	0.2	2
443	Very Strong but Reversible Immobilization of Enzymes on Supports Coated with Ionic Polymers. Methods in Molecular Biology, 2020, 2100, 129-141.	0.9	2
444	Stabilization of Micrococcal Endonuclease by Immobilization on Agarose Gels Highly Activated with CNBr. Biocatalysis, 1993, 8, 81-89.	0.9	1
445	Degradation and denaturation of stable enzymes. Progress in Biotechnology, 1998, , 349-352.	0.2	1
446	Oriented Attachment of Recombinant Proteins to Agarose-Coated Magnetic Nanoparticles by Means of a β-Trefoil Lectin Domain. Bioconjugate Chemistry, 2016, 27, 2734-2743.	3.6	1
447	Fabrication of heterogeneous biocatalyst tethering artificial prosthetic groups to obtain omega-3-fatty acids by selective hydrolysis of fish oils. RSC Advances, 2016, 6, 97659-97663.	3.6	1
448	Optimization of theoretical maximal quantity of cells to immobilize on solid supports in the rational design of immobilized derivatives strategy. World Journal of Microbiology and Biotechnology, 2021, 37, 9.	3.6	1
449	Stabilization of Lecitase Ultra® by Immobilization and Fixation of Bimolecular Aggregates. Release of Omega-3 Fatty Acids by Enzymatic Hydrolysis of Krill Oil. Catalysts, 2021, 11, 1067.	3.5	1
450	A single step purification, immobilization, and hyperactivation of lipases via interfacial adsorption on strongly hydrophobic supports. , 1998, 58, 486.		1

#	Article	IF	CITATIONS
451	Immobilization and Stabilization of Proteins by Multipoint Covalent Attachment on Novel Amino-Epoxy-Sepabeads®. Methods in Biotechnology, 2006, , 153-162.	0.2	1
452	Intraparticle pH Sensing Within Immobilized Enzymes: Immobilized Yellow Fluorescent Protein as Optical Sensor for Spatiotemporal Mapping of pH Inside Porous Particles. Methods in Molecular Biology, 2020, 2100, 319-333.	0.9	1
453	Omega-3 production by fish oil hydrolysis using a lipase from Burkholderia gladioli BRM58833 immobilized and stabilized by post-immobilization techniques. Biochemistry and Biophysics Reports, 2022, 29, 101193.	1.3	1
454	Immobilization-stabilization of proteases as a tool to improve the industrial design of peptide synthesis. Biomedica Biochimica Acta, 1991, 50, S110-3.	0.1	1
455	Preparation of an Industrial Biocatalyst of Penicillin G Acylase on Sepabeads. , 2005, , 273-288.		Ο
456	Comparison of reversible and irreversible immobilization methods of cellobiase on agarose matrix. New Biotechnology, 2009, 25, S169.	4.4	0
457	Immobilizing Systems Biocatalysis for the Selective Oxidation of Glycerol Coupled to Inâ€Situ Cofactor Recycling and Hydrogen Peroxide Elimination. ChemCatChem, 2015, 7, 1884-1884.	3.7	0