Xiang-Qun Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959855/publications.pdf

Version: 2024-02-01

36 papers	954 citations	19 h-index	454955 30 g-index
36 all docs	36 docs citations	36 times ranked	980 citing authors

#	Article	IF	CITATIONS
1	Gestational Hypoxia and Developmental Plasticity. Physiological Reviews, 2018, 98, 1241-1334.	28.8	123
2	Function and regulation of large conductance Ca2+-activated K+ channel in vascular smooth muscle cells. Drug Discovery Today, 2012, 17, 974-987.	6.4	91
3	Pregnancy Upregulates Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Activity and Attenuates Myogenic Tone in Uterine Arteries. Hypertension, 2011, 58, 1132-1139.	2.7	77
4	Chronic Hypoxia Suppresses Pregnancy-Induced Upregulation of Large-Conductance Ca ²⁺ -Activated K ⁺ Channel Activity in Uterine Arteries. Hypertension, 2012, 60, 214-222.	2.7	46
5	Mitochondrial MiRNA in Cardiovascular Function and Disease. Cells, 2019, 8, 1475.	4.1	45
6	The 5-HT3B Subunit Confers Spontaneous Channel Opening and Altered Ligand Properties of the 5-HT3 Receptor. Journal of Biological Chemistry, 2008, 283, 6826-6831.	3.4	38
7	Chronic Hypoxia during Gestation Enhances Uterine Arterial Myogenic Tone via Heightened Oxidative Stress. PLoS ONE, 2013, 8, e73731.	2.5	35
8	MicroRNA-210 Targets Ten-Eleven Translocation Methylcytosine Dioxygenase 1 and Suppresses Pregnancy-Mediated Adaptation of Large Conductance Ca ²⁺ -Activated K ⁺ Channel Expression and Function in Ovine Uterine Arteries. Hypertension, 2017, 70, 601-612.	2.7	34
9	An Interaction Involving an Arginine Residue in the Cytoplasmic Domain of the 5-HT3A Receptor Contributes to Receptor Desensitization Mechanism. Journal of Biological Chemistry, 2006, 281, 21781-21788.	3.4	33
10	Hypoxia and Mitochondrial Dysfunction in Pregnancy Complications. Antioxidants, 2021, 10, 405.	5.1	33
11	Pregnancy Reprograms Large-Conductance Ca ²⁺ -Activated K ⁺ Channel in Uterine Arteries. Hypertension, 2017, 69, 1181-1191.	2.7	31
12	Chronic Hypoxia Inhibits Pregnancy-Induced Upregulation of SK _{Ca} Channel Expression and Function in Uterine Arteries. Hypertension, 2013, 62, 367-374.	2.7	30
13	Chronic hypoxia upregulates DNA methyltransferase and represses large conductance Ca2+-activated K+ channel function in ovine uterine arteriesâ€. Biology of Reproduction, 2017, 96, 424-434.	2.7	25
14	Gestational Hypoxia Increases Reactive Oxygen Species and Inhibits Steroid Hormone–Mediated Upregulation of Ca ²⁺ -Activated K ⁺ Channel Function in Uterine Arteries. Hypertension, 2014, 64, 415-422.	2.7	24
15	MicroRNAs in Uteroplacental Vascular Dysfunction. Cells, 2019, 8, 1344.	4.1	24
16	Longâ€term high altitude hypoxia during gestation suppresses large conductance Ca ²⁺ â€activated K ⁺ channel function in uterine arteries: a causal role for microRNAâ€210. Journal of Physiology, 2018, 596, 5891-5906.	2.9	23
17	Hypoxia Represses ER-α Expression and Inhibits Estrogen-Induced Regulation of Ca ²⁺ -Activated K ⁺ Channel Activity and Myogenic Tone in Ovine Uterine Arteries. Hypertension, 2015, 66, 44-51.	2.7	22
18	Role of aspartate 298 in mouse 5-HT3Areceptor gating and modulation by extracellular Ca2+. Journal of Physiology, 2005, 568, 381-396.	2.9	21

#	Article	IF	Citations
19	Pregnancy Increases Ca ²⁺ Sparks/Spontaneous Transient Outward Currents and Reduces Uterine Arterial Myogenic Tone. Hypertension, 2019, 73, 691-702.	2.7	21
20	Direct effect of chronic hypoxia in suppressing large conductance Ca ²⁺ â€activated K ⁺ channel activity in ovine uterine arteries via increasing oxidative stress. Journal of Physiology, 2016, 594, 343-356.	2.9	20
21	Effect of Oxidative Stress on the Estrogen-NOS-NO-K _{Ca} Channel Pathway in Uteroplacental Dysfunction: Its Implication in Pregnancy Complications. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-19.	4.0	19
22	Uteroplacental Circulation in Normal Pregnancy and Preeclampsia: Functional Adaptation and Maladaptation. International Journal of Molecular Sciences, 2021, 22, 8622.	4.1	16
23	Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discovery Today, 2021, 26, 2754-2773.	6.4	15
24	The L293 residue in transmembrane domain 2 of the 5-HT3A receptor is a molecular determinant of allosteric modulation by 5-hydroxyindole. Neuropharmacology, 2008, 54, 1153-1165.	4.1	14
25	Epigenetic down-regulation of BKCa channel by miR-181a contributes to the fetal and neonatal nicotine-mediated exaggerated coronary vascular tone in adult life. International Journal of Cardiology, 2019, 281, 82-89.	1.7	14
26	Gestational Hypoxia Inhibits Pregnancy-Induced Upregulation of Ca ²⁺ Sparks and Spontaneous Transient Outward Currents in Uterine Arteries Via Heightened Endoplasmic Reticulum/Oxidative Stress. Hypertension, 2020, 76, 930-942.	2.7	13
27	Glucocorticoids and programming of the microenvironment in heart. Journal of Endocrinology, 2019, 242, T121-T133.	2.6	12
28	Mitochondrial Dysfunction in the Pathogenesis of Preeclampsia. Current Hypertension Reports, 2022, 24, 157-172.	3.5	12
29	Effect of chronic hypoxia on adrenoceptor responses of ovine foetal umbilical vessels. British Journal of Pharmacology, 1998, 125, 136-142.	5.4	9
30	Ryanodine receptor subtypes regulate Ca2+ sparks/spontaneous transient outward currents and myogenic tone of uterine arteries in pregnancy. Cardiovascular Research, 2021, 117, 792-804.	3.8	9
31	MicroRNA-210 Mediates Hypoxia-Induced Repression of Spontaneous Transient Outward Currents in Sheep Uterine Arteries During Gestation. Hypertension, 2021, 77, 1412-1427.	2.7	8
32	Angiogenesis during pregnancy: all routes lead to MAPKs. Journal of Physiology, 2017, 595, 4571-4572.	2.9	6
33	Effect of cGMP on Pharmacomechanical Coupling in the Uterine Artery of Near-Term Pregnant Sheep. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 425-431.	2.5	4
34	MicroRNAâ€210â€mediated mtROS confer hypoxiaâ€induced suppression of STOCs in ovine uterine arteries. British Journal of Pharmacology, 0, , .	5.4	4
35	Autoâ€inhibition at a ligandâ€gated ion channel: a crossâ€talk between orthosteric and allosteric sites. British Journal of Pharmacology, 2015, 172, 93-105.	5.4	3
36	Pregnancy Enhances Calcium Spark Activity Independent of Altitude in Ovine Uterine Arterial Myocytes. FASEB Journal, 2018, 32, 858.10.	0.5	0