Jean Dubuisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959778/publications.pdf Version: 2024-02-01

	11608	19690
15,818	70	117
citations	h-index	g-index
237	237	10710
docs citations	times ranked	citing authors
	237	15,818 70 citations h-index 237 237

#	Article	IF	CITATIONS
1	Infectious Hepatitis C Virus Pseudo-particles Containing Functional E1–E2 Envelope Protein Complexes. Journal of Experimental Medicine, 2003, 197, 633-642.	4.2	1,008
2	Structural biology of hepatitis C virus. Hepatology, 2004, 39, 5-19.	3.6	558
3	Cell Entry of Hepatitis C Virus Requires a Set of Co-receptors That Include the CD81 Tetraspanin and the SR-B1 Scavenger Receptor. Journal of Biological Chemistry, 2003, 278, 41624-41630.	1.6	525
4	Hepatitis C Virus Entry Depends on Clathrin-Mediated Endocytosis. Journal of Virology, 2006, 80, 6964-6972.	1.5	480
5	Characterization of Hepatitis C Virus E2 Glycoprotein Interaction with a Putative Cellular Receptor, CD81. Journal of Virology, 1999, 73, 6235-6244.	1.5	428
6	Characterization of host-range and cell entry properties of the major genotypes and subtypes of hepatitis C virus. Hepatology, 2005, 41, 265-274.	3.6	234
7	Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Glycoproteins. Journal of Virology, 2005, 79, 8400-8409.	1.5	231
8	Functional Carbon Quantum Dots as Medical Countermeasures to Human Coronavirus. ACS Applied Materials & Interfaces, 2019, 11, 42964-42974.	4.0	231
9	A Retention Signal Necessary and Sufficient for Endoplasmic Reticulum Localization Maps to the Transmembrane Domain of Hepatitis C Virus Glycoprotein E2. Journal of Virology, 1998, 72, 2183-2191.	1.5	226
10	(â^')-Epigallocatechin- 3 -gallate is a new inhibitor of hepatitis C virus entry. Hepatology, 2012, 55, 720-729.	3.6	221
11	High Density Lipoproteins Facilitate Hepatitis C Virus Entry through the Scavenger Receptor Class B Type I. Journal of Biological Chemistry, 2005, 280, 7793-7799.	1.6	207
12	Characterization of Functional Hepatitis C Virus Envelope Glycoproteins. Journal of Virology, 2004, 78, 2994-3002.	1.5	198
13	The Neutralizing Activity of Anti-Hepatitis C Virus Antibodies Is Modulated by Specific Glycans on the E2 Envelope Protein. Journal of Virology, 2007, 81, 8101-8111.	1.5	187
14	High Density Lipoprotein Inhibits Hepatitis C Virus-neutralizing Antibodies by Stimulating Cell Entry via Activation of the Scavenger Receptor BI. Journal of Biological Chemistry, 2006, 281, 18285-18295.	1.6	186
15	Characterization of the Envelope Glycoproteins Associated with Infectious Hepatitis C Virus. Journal of Virology, 2010, 84, 10159-10168.	1.5	183
16	Role of N-Linked Glycans in the Functions of Hepatitis C Virus Envelope Proteins Incorporated into Infectious Virions. Journal of Virology, 2010, 84, 11905-11915.	1.5	181
17	Subcellular Localization and Topology of the p7 Polypeptide of Hepatitis C Virus. Journal of Virology, 2002, 76, 3720-3730.	1.5	180
18	Involvement of Endoplasmic Reticulum Chaperones in the Folding of Hepatitis C Virus Glycoproteins. Journal of Virology, 1998, 72, 3851-3858.	1.5	178

#	Article	IF	CITATIONS
19	Subcellular Localization of Hepatitis C Virus Structural Proteins in a Cell Culture System That Efficiently Replicates the Virus. Journal of Virology, 2006, 80, 2832-2841.	1.5	178
20	Nonenveloped Nucleocapsids of Hepatitis C Virus in the Serum of Infected Patients. Journal of Virology, 2001, 75, 8240-8250.	1.5	171
21	Characterization of truncated forms of hepatitis C virus glycoproteins Journal of General Virology, 1997, 78, 2299-2306.	1.3	169
22	Hepatitis C virus entry: potential receptors and their biological functions. Journal of General Virology, 2006, 87, 1075-1084.	1.3	164
23	Charged Residues in the Transmembrane Domains of Hepatitis C Virus Glycoproteins Play a Major Role in the Processing, Subcellular Localization, and Assembly of These Envelope Proteins. Journal of Virology, 2000, 74, 3623-3633.	1.5	156
24	Virology and cell biology of the hepatitis C virus life cycle – An update. Journal of Hepatology, 2014, 61, S3-S13.	1.8	154
25	Cyanovirin-N Inhibits Hepatitis C Virus Entry by Binding to Envelope Protein Glycans. Journal of Biological Chemistry, 2006, 281, 25177-25183.	1.6	153
26	Hepatitis C Virus E2 Has Three Immunogenic Domains Containing Conformational Epitopes with Distinct Properties and Biological Functions. Journal of Virology, 2004, 78, 9224-9232.	1.5	149
27	Hepatitis E Virus Lifecycle and Identification of 3 Forms of the ORF2 Capsid Protein. Gastroenterology, 2018, 154, 211-223.e8.	0.6	145
28	NS2 Protein of Hepatitis C Virus Interacts with Structural and Non-Structural Proteins towards Virus Assembly. PLoS Pathogens, 2011, 7, e1001278.	2.1	142
29	The Transmembrane Domain of Hepatitis C Virus Glycoprotein E1 Is a Signal for Static Retention in the Endoplasmic Reticulum. Journal of Virology, 1999, 73, 2641-2649.	1.5	142
30	Hepatitis C virus proteins. World Journal of Gastroenterology, 2007, 13, 2406.	1.4	141
31	Role of low-density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology, 2012, 55, 998-1007.	3.6	140
32	The Transmembrane Domains of Hepatitis C Virus Envelope Glycoproteins E1 and E2 Play a Major Role in Heterodimerization. Journal of Biological Chemistry, 2000, 275, 31428-31437.	1.6	139
33	Griffithsin Has Antiviral Activity against Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2011, 55, 5159-5167.	1.4	139
34	Hepatitis C Virus Glycoprotein Complex Localization in the Endoplasmic Reticulum Involves a Determinant for Retention and Not Retrieval. Journal of Biological Chemistry, 1998, 273, 32088-32095.	1.6	133
35	Glycosylation of hepatitis C virus envelope proteins. Biochimie, 2003, 85, 295-301.	1.3	133
36	Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. Journal of General Virology, 2007, 88, 2495-2503.	1.3	133

#	Article	IF	CITATIONS
37	Biogenesis of hepatitis C virus envelope glycoproteins. Journal of General Virology, 2001, 82, 2589-2595.	1.3	132
38	Human combinatorial libraries yield rare antibodies that broadly neutralize hepatitis C virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 16269-16274.	3.3	127
39	Serum-Derived Hepatitis C Virus Infection of Primary Human Hepatocytes Is Tetraspanin CD81 Dependent. Journal of Virology, 2008, 82, 569-574.	1.5	124
40	Hepatitis C virus entry into host cells. Cellular and Molecular Life Sciences, 2008, 65, 100-112.	2.4	123
41	Anti-spike, Anti-nucleocapsid and Neutralizing Antibodies in SARS-CoV-2 Inpatients and Asymptomatic Individuals. Frontiers in Microbiology, 2020, 11, 584251.	1.5	122
42	Identification of GBF1 as a Cellular Factor Required for Hepatitis C Virus RNA Replication. Journal of Virology, 2010, 84, 773-787.	1.5	121
43	NMR Structure and Ion Channel Activity of the p7 Protein from Hepatitis C Virus. Journal of Biological Chemistry, 2010, 285, 31446-31461.	1.6	119
44	Hepatitis C Virus and Natural Compounds: A New Antiviral Approach?. Viruses, 2012, 4, 2197-2217.	1.5	118
45	Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Research, 2016, 133, 1-8.	1.9	117
46	Polyphenols Inhibit Hepatitis C Virus Entry by a New Mechanism of Action. Journal of Virology, 2015, 89, 10053-10063.	1.5	116
47	Early steps of the hepatitis C virus life cycle. Cellular Microbiology, 2008, 10, 821-827.	1.1	115
48	Study of hepatitis E virus infection of genotype 1 and 3 in mice with humanised liver. Gut, 2017, 66, 920-929.	6.1	113
49	CD81 Expression Is Important for the Permissiveness of Huh7 Cell Clones for Heterogeneous Hepatitis C Virus Infection. Journal of Virology, 2007, 81, 5036-5045.	1.5	112
50	Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends in Cell Biology, 2002, 12, 517-523.	3.6	111
51	Functional Characterization of Intracellular and Secreted Forms of a Truncated Hepatitis C Virus E2 Glycoprotein. Journal of Virology, 2000, 74, 702-709.	1.5	108
52	Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO Journal, 2002, 21, 2893-2902.	3.5	106
53	The C-terminal domain of the MERS coronavirus M protein contains a trans-Golgi network localization signal. Journal of Biological Chemistry, 2019, 294, 14406-14421.	1.6	100
54	The CD81 Partner EWI-2wint Inhibits Hepatitis C Virus Entry. PLoS ONE, 2008, 3, e1866.	1.1	100

#	Article	IF	CITATIONS
55	Role of lipid metabolism in hepatitis C virus assembly and entry. Biology of the Cell, 2010, 102, 63-74.	0.7	98
56	Analysis of the glycosylation sites of hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex Journal of General Virology, 1999, 80, 887-896.	1.3	96
57	Binding of Hepatitis C Virus-Like Particles Derived from Infectious Clone H77C to Defined Human Cell Lines. Journal of Virology, 2002, 76, 1181-1193.	1.5	91
58	Analysis of a Highly Flexible Conformational Immunogenic Domain A in Hepatitis C Virus E2. Journal of Virology, 2005, 79, 13199-13208.	1.5	89
59	The Hepatitis C Virus Glycan Shield and Evasion of the Humoral Immune Response. Viruses, 2011, 3, 1909-1932.	1.5	89
60	High-density lipoproteins reduce the neutralizing effect of hepatitis C virus (HCV)-infected patient antibodies by promoting HCV entry. Journal of General Virology, 2006, 87, 2577-2581.	1.3	88
61	CD81-Dependent Binding of Hepatitis C Virus E1E2 Heterodimers. Journal of Virology, 2003, 77, 10677-10683.	1.5	86
62	Glycan Shielding and Modulation of Hepatitis C Virus Neutralizing Antibodies. Frontiers in Immunology, 2018, 9, 910.	2.2	86
63	Serum amyloid A has antiviral activity against hepatitis C virus by inhibiting virus entry in a cell culture system. Hepatology, 2006, 44, 1626-1634.	3.6	83
64	Hepatitis C Virus Life Cycle and Lipid Metabolism. Biology, 2014, 3, 892-921.	1.3	83
65	Immunogenicity of CIGBâ€230, a therapeutic DNA vaccine preparation, in HCVâ€chronically infected individuals in a Phase I clinical trial. Journal of Viral Hepatitis, 2009, 16, 156-167.	1.0	78
66	Characterization of Human Monoclonal Antibodies Specific to the Hepatitis C Virus Glycoprotein E2 within VitroBinding Neutralization Properties. Virology, 1998, 249, 32-41.	1.1	77
67	Molecular biology of bovine herpesvirus type 4. Veterinary Microbiology, 1992, 33, 79-92.	0.8	76
68	Transmembrane Domains of Hepatitis C Virus Envelope Glycoproteins: Residues Involved in E1E2 Heterodimerization and Involvement of These Domains in Virus Entry. Journal of Virology, 2007, 81, 2372-2381.	1.5	76
69	Basic Residues in Hypervariable Region 1 of Hepatitis C Virus Envelope Glycoprotein E2 Contribute to Virus Entry. Journal of Virology, 2005, 79, 15331-15341.	1.5	74
70	Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cellular Microbiology, 2008, 10, 606-617.	1.1	74
71	Bovine Viral Diarrhea Virus Entry Is Dependent on Clathrin-Mediated Endocytosis. Journal of Virology, 2005, 79, 10826-10829.	1.5	72
72	Construction and characterization of chimeric hepatitis C virus E2 glycoproteins: analysis of regions critical for glycoprotein aggregation and CD81 binding. Journal of General Virology, 2000, 81, 2873-2883.	1.3	72

#	Article	IF	CITATIONS
73	Phenylboronic-Acid-Modified Nanoparticles: Potential Antiviral Therapeutics. ACS Applied Materials & Interfaces, 2013, 5, 12488-12498.	4.0	71
74	Attachment of the Gammaherpesvirus Bovine Herpesvirus 4 Is Mediated by the Interaction of gp8 Glycoprotein with Heparinlike Moieties on the Cell Surface. Virology, 1993, 196, 232-240.	1.1	67
75	New advances in the molecular biology of hepatitis C virus infection: towards the identification of new treatment targets. Gut, 2012, 61, i25-i35.	6.1	67
76	Characterization of Hepatitis C Virus Interaction with Heparan Sulfate Proteoglycans. Journal of Virology, 2015, 89, 3846-3858.	1.5	66
77	Functional hepatitis C virus envelope glycoproteins. Biology of the Cell, 2004, 96, 413-413.	0.7	65
78	Identification of New Functional Regions in Hepatitis C Virus Envelope Glycoprotein E2. Journal of Virology, 2011, 85, 1777-1792.	1.5	64
79	Assembly of a functional HCV glycoprotein heterodimer. Current Issues in Molecular Biology, 2007, 9, 71-86.	1.0	64
80	Live and Killed Rhabdovirus-Based Vectors as Potential Hepatitis C Vaccines. Virology, 2002, 292, 24-34.	1.1	63
81	Secretion of Hepatitis C Virus Replication Intermediates Reduces Activation of Toll-Like Receptor 3 in Hepatocytes. Gastroenterology, 2018, 154, 2237-2251.e16.	0.6	63
82	Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS ONE, 2018, 13, e0198226.	1.1	63
83	Hepatitis C Virus Envelope Glycoprotein E1 Forms Trimers at the Surface of the Virion. Journal of Virology, 2015, 89, 10333-10346.	1.5	59
84	Regulation of Hepatitis C Virus Polyprotein Processing by Signal Peptidase Involves Structural Determinants at the p7 Sequence Junctions. Journal of Biological Chemistry, 2004, 279, 41384-41392.	1.6	58
85	Overcoming Culture Restriction for SARS-CoV-2 in Human Cells Facilitates the Screening of Compounds Inhibiting Viral Replication. Antimicrobial Agents and Chemotherapy, 2021, 65, e0009721.	1.4	58
86	Experimental infection of bulls with a genital isolate of bovine herpesvirus-4 and reactivation of latent virus with dexamethasone. Veterinary Microbiology, 1989, 21, 97-114.	0.8	57
87	Incorporation of Hepatitis C Virus E1 and E2 Glycoproteins: The Keystones on a Peculiar Virion. Viruses, 2014, 6, 1149-1187.	1.5	56
88	Ultrastructural modifications induced by SARS-CoV-2 in Vero cells: a kinetic analysis of viral factory formation, viral particle morphogenesis and virion release. Cellular and Molecular Life Sciences, 2021, 78, 3565-3576.	2.4	55
89	Bovine Herpesvirus 4 Genome: Cloning, Mapping and Strain Variation Analysis. Journal of General Virology, 1990, 71, 133-142.	1.3	51
90	Reduction of the infectivity of hepatitis C virus pseudoparticles by incorporation of misfolded glycoproteins induced by glucosidase inhibitors. Journal of General Virology, 2007, 88, 1133-1143.	1.3	51

#	Article	IF	CITATIONS
91	Hepatitis C Patient-Derived Glycoproteins Exhibit Marked Differences in Susceptibility to Serum Neutralizing Antibodies: Genetic Subtype Defines Antigenic but Not Neutralization Serotype. Journal of Virology, 2011, 85, 4246-4257.	1.5	51
92	Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection. Journal of Biological Chemistry, 2011, 286, 13954-13965.	1.6	51
93	Virusâ€neutralizing antibodies to hepatitis <scp>C</scp> virus. Journal of Viral Hepatitis, 2013, 20, 369-376.	1.0	51
94	Interactions Between Virus Proteins and Host Cell Membranes During the Viral Life Cycle. International Review of Cytology, 2005, 245, 171-244.	6.2	50
95	Successful anti-scavenger receptor class B type I (SR-BI) monoclonal antibody therapy in humanized mice after challenge with HCV variants with <i>in vitro</i> resistance to SR-BI-targeting agents. Hepatology, 2014, 60, 1508-1518.	3.6	50
96	Morphology and Molecular Composition of Purified Bovine Viral Diarrhea Virus Envelope. PLoS Pathogens, 2016, 12, e1005476.	2.1	50
97	Glycosylation of the Hepatitis C Virus Envelope Protein E1 Is Dependent on the Presence of a Downstream Sequence on the Viral Polyprotein. Journal of Biological Chemistry, 2000, 275, 30605-30609.	1.6	48
98	Characterization of the expression of the hepatitis C virus F protein. Journal of General Virology, 2003, 84, 1751-1759.	1.3	48
99	Disulfide Bonds in Hepatitis C Virus Glycoprotein E1 Control the Assembly and Entry Functions of E2 Glycoprotein. Journal of Virology, 2013, 87, 1605-1617.	1.5	48
100	Alteration of the gut microbiota following SARS-CoV-2 infection correlates with disease severity in hamsters. Gut Microbes, 2022, 14, 2018900.	4.3	47
101	Role of the Transmembrane Domains of prM and E Proteins in the Formation of Yellow Fever Virus Envelope. Journal of Virology, 2003, 77, 813-820.	1.5	45
102	Contribution of the charged residues of hepatitis C virus glycoprotein E2 transmembrane domain to the functions of the E1E2 heterodimer. Journal of General Virology, 2005, 86, 2793-2798.	1.3	45
103	Three Different Functional Microdomains in the Hepatitis C Virus Hypervariable Region 1 (HVR1) Mediate Entry and Immune Evasion. Journal of Biological Chemistry, 2012, 287, 35631-35645.	1.6	45
104	New insights into the ORF2 capsid protein, a key player of the hepatitis E virus lifecycle. Scientific Reports, 2019, 9, 6243.	1.6	44
105	The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology, 2013, 58, 86-97.	3.6	43
106	Interplay between hepatitis C virus and lipid metabolism during virus entry and assembly. Biochimie, 2017, 141, 62-69.	1.3	43
107	Antiviral effect of α-glucosidase inhibitors on viral morphogenesis and binding properties of hepatitis C virus-like particles. Journal of General Virology, 2006, 87, 861-871.	1.3	43
108	Biological and biochemical comparison of bovid herpesvirus-4 strains. Veterinary Microbiology, 1988, 16, 339-349.	0.8	41

#	Article	IF	CITATIONS
109	Characterization of monoclonal antibodies to bovine viral diarrhoea virus: evidence of a neutralizing activity against gp48 in the presence of goat anti-mouse immunoglobulin serum. Journal of General Virology, 1991, 72, 1195-1198.	1.3	41
110	Mechanisms of bovine herpesvirus type 1 neutralization by monoclonal antibodies to glycoproteins gl, glll and glV. Journal of General Virology, 1992, 73, 2031-2039.	1.3	41
111	Coexpression of hepatitis C virus envelope proteins E1 and E2 in cis improves the stability of membrane insertion of E2. Journal of General Virology, 2001, 82, 1629-1635.	1.3	41
112	Hepatitis C Virus (HCV)-Induced Immunoglobulin Hypermutation Reduces the Affinity and Neutralizing Activities of Antibodies against HCV Envelope Protein. Journal of Virology, 2008, 82, 6711-6720.	1.5	41
113	Identification of Conserved Residues in Hepatitis C Virus Envelope Glycoprotein E2 That Modulate Virus Dependence on CD81 and SRB1 Entry Factors. Journal of Virology, 2014, 88, 10584-10597.	1.5	41
114	Lettuceâ€produced hepatitis C virus E1E2 heterodimer triggers immune responses in mice and antibody production after oral vaccination. Plant Biotechnology Journal, 2017, 15, 1611-1621.	4.1	41
115	Reconstitution of Hepatitis C Virus Envelope Glycoproteins into Liposomes as a Surrogate Model to Study Virus Attachment. Journal of Biological Chemistry, 2002, 277, 20625-20630.	1.6	39
116	EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cellular Microbiology, 2013, 15, 1234-1252.	1.1	39
117	Topology of hepatitis C virus envelope glycoproteins. Reviews in Medical Virology, 2003, 13, 233-241.	3.9	38
118	Secretory Vesicles Are the Principal Means of SARS-CoV-2 Egress. Cells, 2021, 10, 2047.	1.8	37
119	Mimotopes of the hepatitis C virus hypervariable region 1, but not the natural sequences, induce cross-reactive antibody response by genetic immunization. Hepatology, 2001, 33, 692-703.	3.6	36
120	The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. BMC Microbiology, 2009, 9, 111.	1.3	36
121	Fluoxetine Can Inhibit SARS-CoV-2 In Vitro. Microorganisms, 2021, 9, 339.	1.6	36
122	The Transmembrane Domains of the prM and E Proteins of Yellow Fever Virus Are Endoplasmic Reticulum Localization Signals. Journal of Virology, 2004, 78, 12591-12602.	1.5	35
123	Identification of a New Benzimidazole Derivative as an Antiviral against Hepatitis C Virus. Journal of Virology, 2016, 90, 8422-8434.	1.5	33
124	Characterization of aggregates of hepatitis C virus glycoproteins. Journal of General Virology, 1999, 80, 3099-3107.	1.3	33
125	Characterization of antibody-mediated neutralization directed against the hypervariable region 1 of hepatitis C virus E2 glycoprotein. Journal of General Virology, 2011, 92, 494-506.	1.3	33
126	A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infectious Diseases, 2019, 19, 932.	1.3	32

#	Article	IF	CITATIONS
127	Antigenic and genomic identity between simian herpesvirus aotus type 2 and bovine herpesvirus type 4. Journal of General Virology, 1991, 72, 715-719.	1.3	32
128	Production and characterization of monoclonal antibodies to bovid herpesvirus-4. Veterinary Microbiology, 1989, 19, 305-315.	0.8	31
129	Identification of Basic Amino Acids at the N-Terminal End of the Core Protein That Are Crucial for Hepatitis C Virus Infectivity. Journal of Virology, 2010, 84, 12515-12528.	1.5	31
130	SEROLOGICAL SURVEY OF HERPESVIRUS INFECTIONS IN WILD RUMINANTS OF FRANCE AND BELGIUM. Journal of Wildlife Diseases, 1988, 24, 268-273.	0.3	30
131	Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Journal of Virology, 2017, 91, .	1.5	29
132	Proteins Specified by Bovine Herpesvirus Type 4: Structural Proteins of the Virion and Identification of Two Major Glycoproteins by Using Monoclonal Antibodies. Journal of General Virology, 1989, 70, 1743-1753.	1.3	28
133	Analysis of the binding of hepatitis C virus genotype 1a and 1b E2 glycoproteins to peripheral blood mononuclear cell subsets. Journal of General Virology, 2005, 86, 2507-2512.	1.3	28
134	Identification of class II ADP-ribosylation factors as cellular factors required for hepatitis C virus replication. Cellular Microbiology, 2016, 18, 1121-1133.	1.1	28
135	Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication. Cellular Microbiology, 2018, 20, e12804.	1.1	28
136	Pannexin-1 channel opening is critical for COVID-19 pathogenesis. IScience, 2021, 24, 103478.	1.9	28
137	Epidemiological evaluation of a monoclonal ELISA detecting bovine viral diarrhoea pestivirus antigens in field blood samples of persistently infected cattle. Journal of Virological Methods, 1992, 40, 85-93.	1.0	26
138	Enhanced anti-HCV activity of interferon alpha 17 subtype. Virology Journal, 2009, 6, 70.	1.4	25
139	Boronic acid-modified lipid nanocapsules: a novel platform for the highly efficient inhibition of hepatitis C viral entry. Nanoscale, 2015, 7, 1392-1402.	2.8	25
140	Additional Glycosylation Within a Specific Hypervariable Region of Subtype 3a of Hepatitis C Virus Protects Against Virus Neutralization. Journal of Infectious Diseases, 2013, 208, 1888-1897.	1.9	24
141	Dehydrojuncusol, a Natural Phenanthrene Compound Extracted from <i>Juncus maritimus</i> , Is a New Inhibitor of Hepatitis C Virus RNA Replication. Journal of Virology, 2019, 93, .	1.5	24
142	Genomic diversity among bovine herpesvirus 4 field isolates. Archives of Virology, 1991, 116, 1-18.	0.9	23
143	A Single Nucleotide Change in the 5′ Noncoding Region of Sindbis Virus Confers Neurovirulence in Rats. Journal of Virology, 1999, 73, 10440-10446.	1.5	23
144	A monoclonal ELISA for bovine viral diarrhoea pestivirus antigen detection in persistently infected cattle. Journal of Virological Methods, 1991, 35, 177-188.	1.0	22

#	Article	IF	CITATIONS
145	Recent Advances in Hepatitis C Virus Cell Entry. Viruses, 2010, 2, 692-709.	1.5	22
146	Permissivity of Primary Human Hepatocytes and Different Hepatoma Cell Lines to Cell Culture Adapted Hepatitis C Virus. PLoS ONE, 2013, 8, e70809.	1.1	22
147	NMR Spectroscopy of the Main Protease of SARSâ€CoVâ€2 and Fragmentâ€Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Angewandte Chemie - International Edition, 2021, 60, 25428-25435.	7.2	22
148	Effect of Ribavirin on the Hepatitis C Virus (JFH-1) and its Correlation with Interferon Sensitivity. Antiviral Therapy, 2007, 12, 805-813.	0.6	22
149	Glycosylation of the hepatitis C virus envelope protein E1 occurs posttranslationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line. Glycobiology, 2002, 12, 95-101.	1.3	21
150	Incomplete Humoral Immunity against Hepatitis C Virus Is Linked with Distinct Recognition of Putative Multiple Receptors by E2 Envelope Glycoprotein. Journal of Immunology, 2004, 173, 446-455.	0.4	21
151	The Alphavirus 6K Protein Activates Endogenous Ionic Conductances when Expressed in Xenopus Oocytes. Journal of Membrane Biology, 2007, 215, 37-48.	1.0	21
152	Hepatitis C Virus Assembly Imaging. Viruses, 2011, 3, 2238-2254.	1.5	20
153	SARS-CoV-2 Spike Furin Cleavage Site and S2′ Basic Residues Modulate the Entry Process in a Host Cell-Dependent Manner. Journal of Virology, 2022, 96, .	1.5	20
154	Neutralization of bovine herpesvirus type 4 by pairs of monoclonal antibodies raised against two glycoproteins and identification of antigenic determinants involved in neutralization. Journal of General Virology, 1990, 71, 647-653.	1.3	19
155	Identification of 108 K, 93 K, and 42 K glycoproteins of bovine herpesvirus-1 by monoclonal antibodies. Archives of Virology, 1993, 133, 97-111.	0.9	19
156	Alphacoronaviruses Detected in French Bats Are Phylogeographically Linked to Coronaviruses of European Bats. Viruses, 2015, 7, 6279-6290.	1.5	19
157	Toll-like receptor 5 agonist flagellin reduces influenza A virus replication independently of type I interferon and interleukin 22 and improves antiviral efficacy of oseltamivir. Antiviral Research, 2019, 168, 28-35.	1.9	19
158	New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A. Journal of Virology, 2015, 89, 8346-8364.	1.5	18
159	Entry and Release of Hepatitis C Virus in Polarized Human Hepatocytes. Journal of Virology, 2017, 91, .	1.5	18
160	Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses. Journal of General Virology, 2018, 99, 1086-1096.	1.3	18
161	Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein. PLoS ONE, 2014, 9, e111333.	1.1	18
162	Synthesis and processing of bovine herpesvirus-1 glycoprotein H. Virology, 1995, 206, 651-654.	1.1	16

#	Article	IF	CITATIONS
163	Positive effect of the hepatitis C virus nonstructural 5A protein on viral multiplication. Archives of Virology, 2004, 149, 1353-71.	0.9	16
164	Functional and Physical Interaction between the Arf Activator GBF1 and Hepatitis C Virus NS3 Protein. Journal of Virology, 2019, 93, .	1.5	16
165	A Photoactivable Natural Product with Broad Antiviral Activity against Enveloped Viruses, Including Highly Pathogenic Coronaviruses. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0158121.	1.4	16
166	Processing and Subcellular Localization of the Hepatitis E Virus Replicase: Identification of Candidate Viral Factories. Frontiers in Microbiology, 2022, 13, 828636.	1.5	16
167	HCoV-229E spike protein fusion activation by trypsin-like serine proteases is mediated by proteolytic processing in the S2′ region. Journal of General Virology, 2018, 99, 908-912.	1.3	15
168	Reciprocal relationship between $\hat{l}\pm 1,2$ mannosidase processing and reglucosylation in the rough endoplasmic reticulum of Man-P-Dol deficient cells. FEBS Journal, 2000, 267, 1146-1152.	0.2	13
169	Identification of a dominant endoplasmic reticulum-retention signal in yellow fever virus pre-membrane protein. Journal of General Virology, 2010, 91, 404-414.	1.3	13
170	Regulation of core expression during the hepatitis C virus life cycle. Journal of General Virology, 2015, 96, 311-321.	1.3	13
171	Comprehensive linker-scanning mutagenesis of the hepatitis C virus E1 and E2 envelope glycoproteins reveals new structure–function relationships. Journal of General Virology, 2011, 92, 2249-2261.	1.3	13
172	HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin. World Journal of Gastroenterology, 2014, 20, 148.	1.4	13
173	Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. Journal of Virology, 2018, 92, .	1.5	12
174	Neutralizing antibodies and broad, functional T cell immune response following immunization with hepatitis C virus proteins-based vaccine formulation. Vaccine, 2014, 32, 1720-1726.	1.7	11
175	Proteins of bovine herpesvirus type 4 released into the culture medium of productively infected cells: identification of a 135K glycoprotein involved in viral attachment. Journal of General Virology, 1992, 73, 189-194.	1.3	10
176	Viral hepatitis in the Peruvian Amazon: Ethnomedical context and phytomedical resource. Journal of Ethnopharmacology, 2020, 255, 112735.	2.0	10
177	Rapid Generation of Coronaviral Immunity Using Recombinant Peptide Modified Nanodiamonds. Pathogens, 2021, 10, 861.	1.2	10
178	GNS561 Exhibits Potent Antiviral Activity against SARS-CoV-2 through Autophagy Inhibition. Viruses, 2022, 14, 132.	1.5	10
179	Effect of ribavirin on the hepatitis C virus (JFH-1) and its correlation with interferon sensitivity. Antiviral Therapy, 2007, 12, 805-13.	0.6	10
180	Temporal control of bovine herpesvirus type 4 glycoprotein synthesis. Journal of General Virology, 1991, 72, 1429-1434.	1.3	9

#	Article	IF	CITATIONS
181	Hepatitis C virus entry into the hepatocyte. Open Life Sciences, 2011, 6, 933-945.	0.6	9
182	Hepatitis C Virus Replication and Golgi Function in Brefeldin A-Resistant Hepatoma-Derived Cells. PLoS ONE, 2013, 8, e74491.	1.1	9
183	Safety and Efficacy of Avaren-Fc Lectibody Targeting HCV High-Mannose Glycans in a Human Liver Chimeric Mouse Model. Cellular and Molecular Gastroenterology and Hepatology, 2021, 11, 185-198.	2.3	9
184	Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV. Methods in Molecular Biology, 2019, 1911, 33-45.	0.4	9
185	Low Levels of Hepatitis C Virus (HCV) Neutralizing Antibodies in Patients Coinfected with HCV and Human Immunodeficiency Virus. Journal of Infectious Diseases, 2008, 198, 332-335.	1.9	8
186	Claudin-6 and Occludin Natural Variants Found in a Patient Highly Exposed but Not Infected with Hepatitis C Virus (HCV) Do Not Confer HCV Resistance In Vitro. PLoS ONE, 2015, 10, e0142539.	1.1	8
187	Development and characterization of a human monoclonal antibody targeting the N-terminal region of hepatitis C virus envelope glycoprotein E1. Virology, 2018, 514, 30-41.	1.1	8
188	Hepatitis C virus E2 envelope glycoprotein produced in <i>Nicotiana benthamiana</i> triggers humoral response with virusâ€neutralizing activity in vaccinated mice. Plant Biotechnology Journal, 2021, 19, 2027-2039.	4.1	8
189	Comparison of proteins of simian herpesvirus aotus type 2 and bovine herpesvirus type 4. Journal of General Virology, 1991, 72, 1145-1150.	1.3	8
190	Hepatitis C Virus Resistance to Carbohydrate-Binding Agents. PLoS ONE, 2016, 11, e0149064.	1.1	8
191	Clofoctol inhibits SARS-CoV-2 replication and reduces lung pathology in mice. PLoS Pathogens, 2022, 18, e1010498.	2.1	8
192	Another putative receptor for hepatitis C virus. Hepatology, 2003, 37, 705-707.	3.6	7
193	Rapid synchronization of hepatitis C virus infection by magnetic adsorption. Journal of Virological Methods, 2009, 157, 69-79.	1.0	7
194	Addressing the next challenges: A summary of the 22nd international symposium on hepatitis C virus and related viruses. Journal of Hepatology, 2016, 64, 968-973.	1.8	7
195	Functional Study of the C-Terminal Part of the Hepatitis C Virus E1 Ectodomain. Journal of Virology, 2018, 92, .	1.5	6
196	Hepatitis C Virus Improves Human Tregs Suppressive Function and Promotes Their Recruitment to the Liver. Cells, 2019, 8, 1296.	1.8	6
197	Hepatitis C Virus Capsid Protein and Intracellular Lipids Interplay and itsAssociation With Hepatic Steatosis. Hepatitis Monthly, 2014, 14, e17812.	0.1	6
198	Identification and characterization of glycoprotein gp1 of bovine herpesvirus type 4. Journal of General Virology, 1992, 73, 1293-1296.	1.3	5

#	Article	IF	CITATIONS
199	Last Stop Before Exit – Hepatitis C Assembly and Release as Antiviral Drug Targets. Viruses, 2010, 2, 1782-1803.	1.5	5
200	Use of whole-genome sequencing in the molecular investigation of care-associated HCoV-OC43 infections in a hematopoietic stem cell transplant unit. Journal of Clinical Virology, 2020, 122, 104206.	1.6	5
201	HCV envelope glycoproteins in evirion assembly and entry. Future Virology, 2015, 10, 297-312.	0.9	4
202	Health-Related Quality of Life in Chronic HCV-Infected Patients Switching to Pegylated-Interferon-Free Regimens (ANRS CO20 CUPIC Cohort Study and SIRIUS Trial). Patient, 2017, 10, 605-614.	1.1	4
203	Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virology, 2019, 14, 171-184.	0.9	4
204	Impact of IL28B, APOH and ITPA Polymorphisms on Efficacy and Safety of TVR- or BOC-Based Triple Therapy in Treatment-Experienced HCV-1 Patients with Compensated Cirrhosis from the ANRS CO20-CUPIC Study. PLoS ONE, 2015, 10, e0145105.	1.1	4
205	Bovine herpesvirus 4 isolates: a comparison of three major glycoproteins. Veterinary Microbiology, 1991, 29, 251-259.	0.8	3
206	HCV replication and assembly: a play in one act. Future Virology, 2011, 6, 985-995.	0.9	3
207	A chimeric protein encompassing hepatitis <scp>C</scp> virus epitopes is able to elicit both humoral and cellâ€mediated immune responses in mice. Biotechnology and Applied Biochemistry, 2014, 61, 627-636.	1.4	3
208	Role of the cytosolic domain of occludin in trafficking and hepatitis C virus infection. Traffic, 2019, 20, 753-773.	1.3	3
209	Failure to infect cats with bovine herpesvirus type-4 strain Movar 33/63. Veterinary Record, 1991, 128, 614-615.	0.2	3
210	Analysis of Serine Codon Conservation Reveals Diverse Phenotypic Constraints on Hepatitis C Virus Glycoprotein Evolution. Journal of Virology, 2014, 88, 667-678.	1.5	2
211	Comparative Analysis of Hepatitis C Virus NS5A Dynamics and Localization in Assembly-Deficient Mutants. Pathogens, 2021, 10, 172.	1.2	2
212	NMR spectroscopy of the main protease of SARSâ€CoVâ€⊋ and fragmentâ€based screening identify three protein hotspots and an antiviral fragment. Angewandte Chemie, 2021, 133, 25632.	1.6	2
213	Anti-HCV Tannins From Plants Traditionally Used in West Africa and Extracted With Green Solvents. Frontiers in Pharmacology, 2021, 12, 789688.	1.6	2
214	Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies. Experimental Cell Research, 2011, 317, 2683-2694.	1.2	1
215	Novel replicons and trans -encapsidation systems for Hepatitis C Virus proteins live imaging and virus-host interaction proteomics. Journal of Virological Methods, 2017, 246, 42-50.	1.0	1
216	Claudinâ€1, miRâ€122 and apolipoprotein E transductions improve the permissivity of <scp>SNU</scp> â€182, <scp>SNU</scp> â€398 and <scp>SNU</scp> â€449 hepatoma cells to hepatitis C virus. Journal of Viral Hepatitis, 2018, 25, 63-71.	1.0	1

#	Article	IF	CITATIONS
217	Retention and Degradation of N-Glycoproteins in the Rough Endoplasmic Reticulum. Bioscience Reports, 1999, 19, 491-498.	1.1	0
218	Occludin, the final essential factor for HCV entry?. Future Virology, 2009, 4, 329-333.	0.9	0
219	Structural knowledge of HCV envelope protein region recognized by broadly neutralizing antibodies. Future Virology, 2013, 8, 949-952.	0.9	0
220	The <scp>CUPIC</scp> algorithm: an accurate model for the prediction of sustained viral response under telaprevir or boceprevir triple therapy in cirrhotic patients. Journal of Viral Hepatitis, 2015, 22, 1002-1010.	1.0	0
221	A DNA Vaccine Expressing Fusion Protein E2-NT(gp96) Induces Hepatitis C Virus Cross-Neutralizing Antibody in BALB/c Mice. Hepatitis Monthly, 2019, 19, .	0.1	0
222	BacMam virus-based surface display for HCV E2 glycoprotein induces strong cross-neutralizing antibodies and cellular immune responses in vaccinated mice. Infectious Agents and Cancer, 2021, 16, 69.	1.2	0