Ashok Pandey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7959587/publications.pdf

Version: 2024-02-01

507 papers 38,325 citations

94 h-index 4548 171 g-index

528 all docs 528 docs citations

528 times ranked

27292 citing authors

#	Article	IF	CITATIONS
1	Production of microalgae with high lipid content and their potential as sources of nutraceuticals. Phytochemistry Reviews, 2023, 22, 833-860.	6.5	38
2	Microalgae-based carbon capture and utilization: A critical review on current system developments and biomass utilization. Critical Reviews in Environmental Science and Technology, 2023, 53, 216-238.	12.8	28
3	Sustainable microalgal biomass production in food industry wastewater for low-cost biorefinery products: a review. Phytochemistry Reviews, 2023, 22, 969-991.	6.5	21
4	Biofuel production from microalgae: challenges and chances. Phytochemistry Reviews, 2023, 22, 1089-1126.	6.5	55
5	Neem extract–blended nanocellulose derived from jackfruit peel for antibacterial packagings. Environmental Science and Pollution Research, 2023, 30, 8977-8986.	5.3	4
6	Biosynthesis of (S)-1-(1-naphthyl) ethanol by microbial ketoreductase. Environmental Science and Pollution Research, 2023, 30, 9036-9047.	5.3	3
7	Evolution in mitigation approaches for petroleum oil-polluted environment: recent advances and future directions. Environmental Science and Pollution Research, 2022, 29, 61821-61837.	5.3	14
8	Updates on high value products from cellulosic biorefinery. Fuel, 2022, 308, 122056.	6.4	44
9	Highly efficient bio-adsorption of Malachite green using Chinese Fan-Palm Biochar (Livistona) Tj ETQq1 1 0.7843	14 rgBT /(Overlock 10 Tf
10	Sustainable technologies for platform and drop-in chemicals: production and applications. , 2022, , $1\text{-}29$.		0
11	Challenges and opportunities in bioremediation of micro-nano plastics: A review. Science of the Total Environment, 2022, 802, 149823.	8.0	109
12	Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environmental Research, 2022, 207, 112202.	7.5	32
13	Bioconversion of Glycerol into Biofuelsâ€"Opportunities and Challenges. Bioenergy Research, 2022, 15, 46-61.	3.9	16
14	Advances in solid-state fermentation for bioconversion of agricultural wastes to value-added products: Opportunities and challenges. Bioresource Technology, 2022, 343, 126065.	9.6	144
15	Enzymes Production From Food Waste and Their Application. , 2022, , 293-307.		O
16	Nanocellulose as green material for remediation of hazardous heavy metal contaminants. Journal of Hazardous Materials, 2022, 424, 127516.	12.4	75
17	Microbial bioprocesses for production of nutraceuticals and functional foods., 2022,, 1-29.		1
18	Microbial production and transformation of polyphenols. , 2022, , 189-208.		4

#	Article	IF	CITATIONS
19	Biorefinery aspects for cost-effective production of nanocellulose and high value-added biocomposites. Fuel, 2022, 311, 122575.	6.4	22
20	Characteristics of hydrogen production from steam gasification of plant-originated lignocellulosic biomass and its prospects in Vietnam. International Journal of Hydrogen Energy, 2022, 47, 4394-4425.	7.1	110
21	Chili post-harvest residue-derived nanocellulose composite as a matrix for in vitro cell culture and Hemigraphis colorata blended nanocellulose extends antimicrobial potential. Sustainable Chemistry and Pharmacy, 2022, 25, 100584.	3.3	6
22	Algae biorefinery: A promising approach to promote microalgae industry and waste utilization. Journal of Biotechnology, 2022, 345, 1-16.	3.8	34
23	Current state of the art biotechnological strategies for conversion of watermelon wastes residues to biopolymers production: A review. Chemosphere, 2022, 290, 133310.	8.2	25
24	Biotechnological strategies for bio-transforming biosolid into resources toward circular bio-economy: A review. Renewable and Sustainable Energy Reviews, 2022, 156, 111987.	16.4	51
25	Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of the Total Environment, 2022, 811, 152357.	8.0	60
26	Sustainable biochar: A facile strategy for soil and environmental restoration, energy generation, mitigation of global climate change and circular bioeconomy. Chemosphere, 2022, 293, 133474.	8.2	47
27	Sustainable technologies for the production of sophorolipids from renewable wastes. , 2022, , 275-294.		1
28	Enzymes in seafood processing. , 2022, , 189-204.		1
29	Sustainable production and applications of biochar in circular bioeconomy. , 2022, , 337-361.		0
30	Sustainable processes for treatment and management of seafood solid waste. Science of the Total Environment, 2022, 817, 152951.	8.0	18
31	Agricultural waste biorefinery development towards circular bioeconomy. Renewable and Sustainable Energy Reviews, 2022, 158, 112122.	16.4	94
32	Integrated approaches to mitigate threats from emerging potentially toxic elements: A way forward for sustainable environmental management. Environmental Research, 2022, 209, 112844.	7.5	25
33	Carbon-based catalyst for environmental bioremediation and sustainability: Updates and perspectives on techno-economics and life cycle assessment. Environmental Research, 2022, 209, 112793.	7.5	18
34	Tailored enzymes as next-generation food-packaging tools. Trends in Biotechnology, 2022, 40, 1004-1017.	9.3	10
35	Multi-criteria research lines on livestock manure biorefinery development towards a circular economy: From the perspective of a life cycle assessment and business models strategies. Journal of Cleaner Production, 2022, 341, 130862.	9.3	64
36	Composting as a sustainable technology for integrated municipal solid waste management., 2022,, 23-39.		3

#	Article	IF	Citations
37	Catalyst-Based Synthesis of 2,5-Dimethylfuran from Carbohydrates as a Sustainable Biofuel Production Route. ACS Sustainable Chemistry and Engineering, 2022, 10, 3079-3115.	6.7	56
38	Multifunctional applications of bamboo crop beyond environmental management: an Indian prospective. Bioengineered, 2022, 13, 8893-8914.	3.2	34
39	Emerging trends of microbial technology for the production of oligosaccharides from biowaste and their potential application as prebiotic. International Journal of Food Microbiology, 2022, 368, 109610.	4.7	19
40	Processing of municipal solid waste resources for a circular economy in China: An overview. Fuel, 2022, 317, 123478.	6.4	67
41	Organic wastes bioremediation and its changing prospects. Science of the Total Environment, 2022, 824, 153889.	8.0	67
42	Enhancement of mechanical and thermal properties of Ixora coccinea L. plant root derived nanocellulose using polyethylene glycol-glutaraldehyde system. Chemosphere, 2022, 298, 134324.	8.2	7
43	Nanocellulose in tissue engineering and bioremediation: mechanism of action. Bioengineered, 2022, 13, 12823-12833.	3.2	5
44	Bioremediation of Endocrine Disrupting Chemicals- Advancements and Challenges. Environmental Research, 2022, 213, 113509.	7. 5	14
45	Technoeconomic analysis of biofuel production from marine algae. , 2022, , 627-652.		0
46	Recent Advances in Machine Learning Research for Nanofluid-Based Heat Transfer in Renewable Energy System. Energy & System. E	5.1	164
47	Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. Fuel, 2022, 325, 124846.	6.4	45
48	Biobased biorefineries: Sustainable bioprocesses and bioproducts from biomass/bioresources special issue. Renewable and Sustainable Energy Reviews, 2022, 167, 112683.	16.4	12
49	Leads and hurdles to sustainable microbial bioplastic production. Chemosphere, 2022, 305, 135390.	8.2	14
50	Microbial engineering for the production and application of phytases to the treatment of the toxic pollutants: A review. Environmental Pollution, 2022, 308, 119703.	7. 5	5
51	Insight into citric acid: A versatile organic acid. Fuel, 2022, 327, 125181.	6.4	18
52	Current status of global warming potential reduction by cleaner composting. Energy and Environment, 2021, 32, 1002-1028.	4.6	3
53	Hazardous minerals mining: Challenges and solutions. Journal of Hazardous Materials, 2021, 402, 123474.	12.4	27
54	Enzyme Technology in Food Processing: Recent Developments and Future Prospects. , 2021, , 191-215.		7

#	Article	IF	CITATIONS
55	A green biorefinery platform for cost-effective nanocellulose production: investigation of hydrodynamic properties and biodegradability of thin films. Biomass Conversion and Biorefinery, 2021, 11, 861-870.	4.6	20
56	Petroleum sludge polluted soil remediation: Integrated approach involving novel bacterial consortium and nutrient application. Science of the Total Environment, 2021, 763, 142934.	8.0	30
57	Solid-state fermentation technology and innovation for the production of agricultural and animal feed bioproducts. Systems Microbiology and Biomanufacturing, 2021, 1, 142-165.	2.9	38
58	Can biochar regulate the fate of heavy metals (Cu and Zn) resistant bacteria community during the poultry manure composting?. Journal of Hazardous Materials, 2021, 406, 124593.	12.4	59
59	Citric acid bioproduction and downstream processing: Status, opportunities, and challenges. Bioresource Technology, 2021, 320, 124426.	9.6	35
60	Recent advances in microbial biosynthesis of C3 – C5 diols: Genetics and process engineering approaches. Bioresource Technology, 2021, 322, 124527.	9.6	25
61	Chlorpyrifos induced proteome remodelling of Pseudomonas nitroreducens AR-3 potentially aid efficient degradation of the pesticide. Environmental Technology and Innovation, 2021, 21, 101307.	6.1	8
62	Thermophilic Chitinases: Structural, Functional and Engineering Attributes for Industrial Applications. Applied Biochemistry and Biotechnology, 2021, 193, 142-164.	2.9	19
63	Food waste biorefinery: case study in China for enhancing the emerging bioeconomy. , 2021, , 421-438.		1
64	Bioprospecting of gut microflora for plastic biodegradation. Bioengineered, 2021, 12, 1040-1053.	3.2	16
65	Biomedical applications of microbial polyhydroxyalkanoates. , 2021, , 495-513.		1
66	Thermal/rheological behavior and functional properties of biopolymers and biopolymer composites., 2021,, 413-438.		0
67	Municipal solid waste biorefineries: A case study in China. , 2021, , 439-457.		6
68	Application of nanoengineered materials for bioenergy production., 2021,, 333-354.		1
69	Potential Utilisation of Fruit and Vegetable Waste: An Overview. Advances in Science, Technology and Innovation, 2021, , 179-191.	0.4	2
70	Synthesis and Characterization of Transparent Biodegradable Chitosan: Exopolysaccharide Composite Films Plasticized by Bio-Derived 1,3-Propanediol. Sustainable Chemistry, 2021, 2, 49-62.	4.7	2
71	Sugarcane bagasse derived nanocellulose reinforced with frankincense (Boswellia serrata): Physicochemical properties, biodegradability and antimicrobial effect for controlling microbial growth for food packaging application. Environmental Technology and Innovation, 2021, 21, 101335.	6.1	15
72	Bioplastic production from renewable lignocellulosic feedstocks: a review. Reviews in Environmental Science and Biotechnology, 2021, 20, 167-187.	8.1	33

#	Article	IF	Citations
73	Resource recovery through bioremediation of wastewaters and waste carbon by microalgae: a circular bioeconomy approach. Environmental Science and Pollution Research, 2021, 28, 58837-58856.	5.3	36
74	Sequential presence of heavy metal resistant fungal communities influenced by biochar amendment in the poultry manure composting process. Journal of Cleaner Production, 2021, 291, 125947.	9.3	43
75	Current research trends on micro- and nano-plastics as an emerging threat to global environment: A review. Journal of Hazardous Materials, 2021, 409, 124967.	12.4	147
76	Development of an eco-friendly biodegradable plastic from jack fruit peel cellulose with different plasticizers and Boswellia serrata as filler. Science of the Total Environment, 2021, 767, 144285.	8.0	30
77	Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. Bioresource Technology, 2021, 327, 124791.	9.6	14
78	A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microbial Cell Factories, 2021, 20, 120.	4.0	124
79	Glycerol waste to value added products and its potential applications. Systems Microbiology and Biomanufacturing, 2021, 1, 378-396.	2.9	56
80	Biochar for remediation of agrochemicals and synthetic organic dyes from environmental samples: A review. Chemosphere, 2021, 272, 129917.	8.2	57
81	A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste. Renewable and Sustainable Energy Reviews, 2021, 143, 110972.	16.4	68
82	Draft genome of the glucose tolerant \hat{l}^2 -glucosidase producing rare Aspergillus unguis reveals complete cellulolytic machinery with multiple beta-glucosidase genes. Fungal Genetics and Biology, 2021, 151, 103551.	2.1	3
83	Enzymatic approaches in the bioprocessing of shellfish wastes. 3 Biotech, 2021, 11, 367.	2.2	12
84	Recent trends in microbial nanoparticle synthesis and potential application in environmental technology: a comprehensive review. Environmental Science and Pollution Research, 2021, 28, 49362-49382.	5.3	18
85	Techno-economics and life-cycle assessment of biological and thermochemical treatment of bio-waste. Renewable and Sustainable Energy Reviews, 2021, 144, 110837.	16.4	77
86	Technologies for disinfection of food grains: Advances and way forward. Food Research International, 2021, 145, 110396.	6.2	25
87	Minimizing hazardous impact of food waste in a circular economy – Advances in resource recovery through green strategies. Journal of Hazardous Materials, 2021, 416, 126154.	12.4	50
88	Advanced biomaterials for sustainable applications in the food industry: Updates and challenges. Environmental Pollution, 2021, 283, 117071.	7.5	40
89	Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology and Innovation, 2021, 23, 101556.	6.1	58
90	Uptake and mobilization of heavy metals through phytoremediation process from native plants species growing on complex pollutants: Antioxidant enzymes and photosynthetic pigments response. Environmental Technology and Innovation, 2021, 23, 101629.	6.1	16

#	Article	IF	Citations
91	Metal and metal(loids) removal efficiency using genetically engineered microbes: Applications and challenges. Journal of Hazardous Materials, 2021, 416, 125855.	12.4	35
92	Bioremediated techniques for remediation of metal pollutants using metagenomics approaches: A review. Journal of Environmental Chemical Engineering, 2021, 9, 105684.	6.7	71
93	Efficiency of transporter genes and proteins in hyperaccumulator plants for metals tolerance in wastewater treatment: Sustainable technique for metal detoxification. Environmental Technology and Innovation, 2021, 23, 101725.	6.1	32
94	Role of microbial diversity to influence the growth and environmental remediation capacity of bamboo: A review. Industrial Crops and Products, 2021, 167, 113567.	5.2	64
95	Production of fungal endoinulinase in a stirred tank reactor and fructooligosaccharides preparation by crude endoinulinase. Bioresource Technology Reports, 2021, 15, 100743.	2.7	5
96	Potential of nanocellulose for wastewater treatment. Chemosphere, 2021, 281, 130738.	8.2	43
97	Probiotics and gut microbiome â° Prospects and challenges in remediating heavy metal toxicity. Journal of Hazardous Materials, 2021, 420, 126676.	12.4	56
98	Patterns of heavy metal resistant bacterial community succession influenced by biochar amendment during poultry manure composting. Journal of Hazardous Materials, 2021, 420, 126562.	12.4	58
99	Cleaner technologies to combat heavy metal toxicity. Journal of Environmental Management, 2021, 296, 113231.	7.8	31
100	Sweet sorghum juice as an alternative carbon source and adaptive evolution of Lactobacillus brevis NIE9.3.3 in sweet sorghum juice and biodiesel derived crude glycerol to improve 1, 3 propanediol production. Journal of Environmental Chemical Engineering, 2021, 9, 106086.	6.7	4
101	High yield recovery of 2,3-butanediol from fermented broth accumulated on xylose rich sugarcane bagasse hydrolysate using aqueous two-phase extraction system. Bioresource Technology, 2021, 337, 125463.	9.6	24
102	Pyrolysis of almond (Prunus amygdalus) shells: Kinetic analysis, modelling, energy assessment and technical feasibility studies. Bioresource Technology, 2021, 337, 125466.	9.6	35
103	Technological perspectives for utilisation of waste glycerol for the production of biofuels: A review. Environmental Technology and Innovation, 2021, 24, 101902.	6.1	44
104	Strategies and advances in the pretreatment of microalgal biomass. Journal of Biotechnology, 2021, 341, 63-75.	3.8	24
105	Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures. Science of the Total Environment, 2021, 795, 148722.	8.0	30
106	Green remediation of the potential hazardous shellfish wastes generated from the processing industries and their bioprospecting. Environmental Technology and Innovation, 2021, 24, 101979.	6.1	18
107	Valorization of paper industry rejects by combined thermo-chemical pretreatment and biological conversion to L-lysine. Environmental Technology and Innovation, 2021, 24, 101882.	6.1	4
108	Lignocellulosic biomass-based engineered biochar composites: A facile strategy for abatement of emerging pollutants and utilization in industrial applications. Renewable and Sustainable Energy Reviews, 2021, 152, 111643.	16.4	41

#	Article	IF	CITATIONS
109	Production and applications of polylactic acid. , 2021, , 309-357.		3
110	Waste Biorefinery Development Toward Circular Bioeconomy With a Focus on Life-Cycle Assessment. , 2021, , 199-230.		2
111	Nanofluid research advances: Preparation, characteristics and applications in food processing. Food Research International, 2021, 150, 110751.	6.2	11
112	Bioengineered biochar as smart candidate for resource recovery toward circular bio-economy: a review. Bioengineered, 2021, 12, 10269-10301.	3.2	37
113	Bioengineered microbes for soil health restoration: present status and future. Bioengineered, 2021, 12, 12839-12853.	3.2	26
114	Bacterial nanocellulose: engineering, production, and applications. Bioengineered, 2021, 12, 11463-11483.	3.2	41
115	Delignification of cotton stalks using sodium cumene sulfonate for bioethanol production. Biofuels, 2020, 11, 431-440.	2.4	21
116	Evaluation of Freshwater Microalgal Isolates for Growth and Oil Production in Seawater Medium. Waste and Biomass Valorization, 2020, 11 , 223-230.	3.4	15
117	Bioengineering advancements, innovations and challenges on green synthesis of 2, 5-furan dicarboxylic acid. Bioengineered, 2020, 11, 19-38.	3.2	31
118	Effects of microbial culture and chicken manure biochar on compost maturity and greenhouse gas emissions during chicken manure composting. Journal of Hazardous Materials, 2020, 389, 121908.	12.4	178
119	Biochemical conversion of biodiesel by-product into malic acid: A way towards sustainability. Science of the Total Environment, 2020, 709, 136206.	8.0	18
120	Bacterial production of fatty acid and biodiesel: opportunity and challenges. , 2020, , 21-49.		12
121	Agroresidue-based biorefineries. , 2020, , 243-258.		4
122	Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology, 2020, 301, 122725.	9.6	323
123	Microbial strategies for bio-transforming food waste into resources. Bioresource Technology, 2020, 299, 122580.	9.6	248
124	Statistical optimization of solid-state fermentation for the production of fungal inulinase from apple pomace. Bioresource Technology Reports, 2020, 9, 100364.	2.7	31
125	Microalgal Biorefineries for Industrial Products. , 2020, , 187-195.		11
126	Nanocellulose-based products for sustainable applications-recent trends and possibilities. Reviews in Environmental Science and Biotechnology, 2020, 19, 779-806.	8.1	79

#	Article	IF	Citations
127	Biotechnological potential of <i>Beauveria bassiana</i> as a source of novel biocatalysts and metabolites. Critical Reviews in Biotechnology, 2020, 40, 1019-1034.	9.0	38
128	Oilfield waste treatment using novel hydrocarbon utilizing bacterial consortium — A microcosm approach. Science of the Total Environment, 2020, 745, 141043.	8.0	32
129	Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution, 2020, 267, 115656.	7.5	70
130	Penicillium janthinellum NCIM1366 shows improved biomass hydrolysis and a larger number of CAZymes with higher induction levels over Trichoderma reesei RUT-C30. Biotechnology for Biofuels, 2020, 13, 196.	6.2	14
131	Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. Renewable and Sustainable Energy Reviews, 2020, 127, 109876.	16.4	203
132	Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Science of the Total Environment, 2020, 737, 139766.	8.0	94
133	Valorization of cashew nut processing residues for industrial applications. Industrial Crops and Products, 2020, 152, 112550.	5.2	65
134	Manure pretreatments with black soldier fly Hermetia illucens L. (Diptera: Stratiomyidae): A study to reduce pathogen content. Science of the Total Environment, 2020, 737, 139842.	8.0	46
135	Remodeling agro-industrial and food wastes into value-added bioactives and biopolymers. Industrial Crops and Products, 2020, 154, 112621.	5.2	59
136	Critical Review on Biocharâ€Supported Catalysts for Pollutant Degradation and Sustainable Biorefinery. Advanced Sustainable Systems, 2020, 4, 1900149.	5.3	93
137	Succession of keratin-degrading bacteria and associated health risks during pig manure composting. Journal of Cleaner Production, 2020, 258, 120624.	9.3	33
138	Lignocellulosic bio-refinery approach for microbial 2,3-Butanediol production. Bioresource Technology, 2020, 302, 122873.	9.6	64
139	Emerging applications of biochar: Improving pig manure composting and attenuation of heavy metal mobility in mature compost. Journal of Hazardous Materials, 2020, 389, 122116.	12.4	96
140	Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. Renewable Energy, 2020, 152, 421-429.	8.9	41
141	Algae as potential feedstock for the production of biofuels and value-added products: Opportunities and challenges. Science of the Total Environment, 2020, 716, 137116.	8.0	299
142	Fungal endoinulinase production from raw Asparagus inulin for the production of fructooligosaccharides. Bioresource Technology Reports, 2020, 10, 100417.	2.7	11
143	Bacterial polyhydroxyalkanoates: Opportunities, challenges, and prospects. Journal of Cleaner Production, 2020, 263, 121500.	9.3	145
144	Promising enzymes for biomass processing. , 2020, , 245-271.		5

#	Article	IF	CITATION
145	Organic solid waste biorefinery: Sustainable strategy for emerging circular bioeconomy in China. Industrial Crops and Products, 2020, 153, 112568.	5.2	93
146	Assessing the impact of industrial waste on environment and mitigation strategies: A comprehensive review. Journal of Hazardous Materials, 2020, 398, 123019.	12.4	92
147	Conventional and Alternative Strategies of Pretreatment of Chili Postharvest Residue for the Production of Different Value-Added Products. Applied Environmental Science and Engineering for A Sustainable Future, 2020, , 191-201.	0.5	0
148	Enzymes for second generation biofuels: Recent developments and future perspectives. Bioresource Technology Reports, 2019, 5, 317-325.	2.7	122
149	Tailoring of microbes for the production of high value plant-derived compounds: From pathway engineering to fermentative production. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140262.	2.3	11
150	Lignocellulosic Bioethanol: Current Status and Future Perspectives., 2019,, 331-354.		20
151	Production of Celluloytic Enzymes for Lignocellulosic Biomass Hydrolysis. , 2019, , 401-426.		4
152	Recent advances in microbial production of malic acid from renewable byproducts. Reviews in Environmental Science and Biotechnology, 2019, 18, 579-595.	8.1	29
153	Influence of aeration, agitation and process duration on fungal inulinase production from paneer whey in a stirred tank reactor. Bioresource Technology Reports, 2019, 8, 100343.	2.7	7
154	Rapid degradation of the organophosphate pesticide – Chlorpyrifos by a novel strain of Pseudomonas nitroreducens AR-3. Bioresource Technology, 2019, 292, 122025.	9.6	83
155	Thermostable phytase in feed and fuel industries. Bioresource Technology, 2019, 278, 400-407.	9.6	62
156	Biofuel Production From Biomass. , 2019, , 79-92.		59
157	Genomics of Lactic Acid Bacteria for Glycerol Dissimilation. Molecular Biotechnology, 2019, 61, 562-578.	2.4	8
158	A critical review of organic manure biorefinery models toward sustainable circular bioeconomy: Technological challenges, advancements, innovations, and future perspectives. Renewable and Sustainable Energy Reviews, 2019, 111, 115-131.	16.4	177
159	Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. Bioresource Technology Reports, 2019, 7, 100224.	2.7	49
160	Biological pretreatment of lignocellulosic biomassâ€"Current trends and future perspectives. , 2019, , 197-212.		35
161	Conversion of food and kitchen waste to value-added products. Journal of Environmental Management, 2019, 241, 619-630.	7.8	187
162	Genomic analysis of carbon dioxide sequestering bacterium for exopolysaccharides production. Scientific Reports, 2019, 9, 4270.	3.3	23

#	Article	IF	CITATIONS
163	Biotransformation of 5-hydroxymethylfurfural by Acinetobacter oleivorans S27 for the synthesis of furan derivatives. Bioresource Technology, 2019, 282, 88-93.	9.6	29
164	Biosynthesis of 2,5-furan dicarboxylic acid by Aspergillus flavus APLS-1: Process optimization and intermediate product analysis. Bioresource Technology, 2019, 284, 155-160.	9.6	30
165	Microbial Enzymesâ€"An Overview. , 2019, , 1-40.		46
166	Cassava starch hydrolysate as sustainable carbon source for exopolysaccharide production by Lactobacillus plantarum. Bioresource Technology Reports, 2019, 6, 85-88.	2.7	12
167	Role of compost biochar amendment on the (im)mobilization of cadmium and zinc for Chinese cabbage (Brassica rapa L.) from contaminated soil. Journal of Soils and Sediments, 2019, 19, 3883-3897.	3.0	23
168	Application of metagenomic analysis for detection of the reduction in the antibiotic resistance genes (ARGs) by the addition of clay during poultry manure composting. Chemosphere, 2019, 220, 137-145.	8.2	41
169	Industrial Enzymes as Feed Supplements—Advantages to Nutrition and Global Environment. Energy, Environment, and Sustainability, 2019, , 293-304.	1.0	9
170	Biotechnological potential of yeasts in functional food industry. Trends in Food Science and Technology, 2019, 83, 129-137.	15.1	90
171	Simultaneous saccharification and fermentation of oil palm front for the production of 2,3-butanediol. Bioresource Technology, 2019, 278, 145-149.	9.6	40
172	Thermostable cellulases: Current status and perspectives. Bioresource Technology, 2019, 279, 385-392.	9.6	188
173	An assessment of the persistence of pathogenic bacteria removal in chicken manure compost employing clay as additive via meta-genomic analysis. Journal of Hazardous Materials, 2019, 366, 184-191.	12.4	57
174	CHAPTER 7. White Biotechnology for Polymer Building Blocks: Strategies for Enhanced Production of Bio-based 1,3-Propanediol and Its Applications. RSC Green Chemistry, 2019, , 145-182.	0.1	1
175	Enzymes Production From Food Waste and Their Application. Advances in Environmental Engineering and Green Technologies Book Series, 2019, , 1-19.	0.4	0
176	An efficient aqueous two phase systems using dual inorganic electrolytes to separate 1,3-propanediol from the fermented broth. Bioresource Technology, 2018, 254, 239-246.	9.6	20
177	Biocatalytic strategies for the production of high fructose syrup from inulin. Bioresource Technology, 2018, 260, 395-403.	9.6	58
178	An effective surfactant-assisted hydrothermal pretreatment strategy for bioethanol production from chili post-harvest residue by separate hydrolysis and fermentation. Bioprocess and Biosystems Engineering, 2018, 41, 565-571.	3.4	12
179	Effect of dilute acid pretreatment of wild rice grass (Zizania latifolia) from Loktak Lake for enzymatic hydrolysis. Bioresource Technology, 2018, 253, 252-255.	9.6	105
180	Pentose rich acid pretreated liquor as co-substrate for 1,3-propanediol production. Renewable Energy, 2018, 129, 794-799.	8.9	27

#	Article	IF	Citations
181	SSF production, purification and characterization of chitin deacetylase from Aspergillus flavus. Biocatalysis and Biotransformation, 2018, 36, 296-306.	2.0	8
182	Algal Green Energy – R&D and technological perspectives for biodiesel production. Renewable and Sustainable Energy Reviews, 2018, 82, 2946-2969.	16.4	121
183	Carbon-Increasing Catalytic Strategies for Upgrading Biomass into Energy-Intensive Fuels and Chemicals. ACS Catalysis, 2018, 8, 148-187.	11.2	267
184	Production of Pectinase from Bacillus sonorensis MPTD1. Food Technology and Biotechnology, 2018, 56, 110-116.	2.1	30
185	Applications of Microbial Enzymes in Food Industry. Food Technology and Biotechnology, 2018, 56, 16-30.	2.1	430
186	Zinc oxide phytase nanocomposites as contributory tools to improved thermostability and shelflife. Bioresource Technology Reports, 2018, 3, 1-6.	2.7	11
187	Genomic and proteomic analysis of lignin degrading and polyhydroxyalkanoate accumulating \hat{l}^2 -proteobacterium Pandoraea sp. ISTKB. Biotechnology for Biofuels, 2018, 11, 154.	6.2	88
188	Purification and characterization of two isoforms of exoinulinase from Penicillium oxalicum BGPUP-4 for the preparation of high fructose syrup from inulin. International Journal of Biological Macromolecules, 2018, 118, 1974-1983.	7.5	23
189	Advances in Solid-State Fermentation. , 2018, , 1-17.		25
190	Design of Bioreactors in Solid-State Fermentation. , 2018, , 83-96.		14
191	Kinetics of the Solid-State Fermentation Process. , 2018, , 57-82.		6
192	Solid-State Fermentation of Carrot Pomace for the Production of Inulinase by Penicillium oxalicum BGPUP-4. Food Technology and Biotechnology, 2018, 56, .	2.1	21
193	Solid-State Fermentation of Carrot Pomace for the Production of Inulinase by BGPUP-4. Food Technology and Biotechnology, 2018, 56, 31-39.	2.1	2
194	Optimization of Process Parameters for the Production of Gamma-Linolenic Acid from Cunnighamella elegans CFR C07 under Submerged Fermentation. Food Technology and Biotechnology, 2018, 56, 96-100.	2.1	0
195	Development of a novel ultrasound-assisted alkali pretreatment strategy for the production of bioethanol and xylanases from chili post harvest residue. Bioresource Technology, 2017, 242, 146-151.	9.6	45
196	Bioflocculation: An alternative strategy for harvesting of microalgae – An overview. Bioresource Technology, 2017, 242, 227-235.	9.6	214
197	Recent advances in the production of value added chemicals and lipids utilizing biodiesel industry generated crude glycerol as a substrate – Metabolic aspects, challenges and possibilities: An overview. Bioresource Technology, 2017, 239, 507-517.	9.6	121
198	Strategies for design of improved biocatalysts for industrial applications. Bioresource Technology, 2017, 245, 1304-1313.	9.6	175

#	Article	IF	Citations
199	Molecular improvements in microbial $\hat{l}\pm$ -amylases for enhanced stability and catalytic efficiency. Bioresource Technology, 2017, 245, 1740-1748.	9.6	84
200	Genetic and metabolic engineering approaches for the production and delivery of L-asparaginases: An overview. Bioresource Technology, 2017, 245, 1775-1781.	9.6	22
201	Microbial phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications. Bioresource Technology, 2017, 245, 1790-1799.	9.6	35
202	Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application. Bioresource Technology, 2017, 245, 1352-1361.	9.6	110
203	Recent developments in l-glutaminase production and applications – An overview. Bioresource Technology, 2017, 245, 1766-1774.	9.6	46
204	Expression system for heterologous protein expression in the filamentous fungus Aspergillus unguis. Bioresource Technology, 2017, 245, 1334-1342.	9.6	27
205	A biorefinery-based approach for the production of ethanol from enzymatically hydrolysed cotton stalks. Bioresource Technology, 2017, 242, 178-183.	9.6	30
206	Potential of Brachiaria mutica (Para grass) for bioethanol production from Loktak Lake. Bioresource Technology, 2017, 242, 133-138.	9.6	24
207	Cellulase production through solid-state tray fermentation, and its use for bioethanol from sorghum stover. Bioresource Technology, 2017, 242, 265-271.	9.6	90
208	Prebiotic Oligosaccharides: Special Focus on Fructooligosaccharides, Its Biosynthesis and Bioactivity. Applied Biochemistry and Biotechnology, 2017, 183, 613-635.	2.9	122
209	Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere, 2017, 188, 280-291.	8.2	212
210	Resolution of enantiopure (S)â€1â€(1â€napthyl) ethanol from racemic mixture by a novel <i>Bacillus cereus</i> isolate. Journal of Basic Microbiology, 2017, 57, 762-769.	3.3	9
211	Microalgal hydrogen production – A review. Bioresource Technology, 2017, 243, 1194-1206.	9.6	275
212	Adsorptive detoxification of fermentation inhibitors in acid pretreated liquor using functionalized polymer designed by molecular simulation. Bioprocess and Biosystems Engineering, 2017, 40, 1657-1667.	3.4	2
213	Self-cycling fermentation for 1,3-propanediol production: Comparative evaluation of metabolite flux in cell recycling, simple batch and continuous processes using Lactobacillus brevis N1E9.3.3 strain. Journal of Biotechnology, 2017, 259, 110-119.	3.8	15
214	Metagenome Analysis: a Powerful Tool for Enzyme Bioprospecting. Applied Biochemistry and Biotechnology, 2017, 183, 636-651.	2.9	96
215	Heterogeneity of zeolite combined with biochar properties as a function of sewage sludge composting and production of nutrient-rich compost. Waste Management, 2017, 68, 760-773.	7.4	88
216	Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach. Biochemical Engineering Journal, 2017, 126, 109-117.	3.6	12

#	Article	IF	Citations
217	Recent advancements in the production and application of microbial pectinases: an overview. Reviews in Environmental Science and Biotechnology, 2017, 16, 381-394.	8.1	56
218	Production, Purification, and Application of Microbial Enzymes., 2017, , 13-41.		38
219	Synthetic Biology and Metabolic Engineering Approaches and Its Impact on Non-Conventional Yeast and Biofuel Production. Frontiers in Energy Research, 2017, 5, .	2.3	32
220	Evaluation of hydrotropic pretreatment on lignocellulosic biomass. Bioresource Technology, 2016, 213, 350-358.	9.6	47
221	Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renewable Energy, 2016, 98, 9-15.	8.9	58
222	A novel sono-assisted acid pretreatment of chili post harvest residue for bioethanol production. Bioresource Technology, 2016, 213, 58-63.	9.6	39
223	Development of a combined pretreatment and hydrolysis strategy of rice straw for the production of bioethanol and biopolymer. Bioresource Technology, 2016, 215, 110-116.	9.6	31
224	Potential of rice straw for bio-refining: An overview. Bioresource Technology, 2016, 215, 29-36.	9.6	199
225	Production of endoglucanase from Trichoderma reesei RUT C30 and its application in deinking of printed office waste paper. Biologia (Poland), 2016, 71, 265-271.	1.5	3
226	Production of poly-3-hydroxybutyrate from mixed culture. Biologia (Poland), 2016, 71, 736-742.	1.5	4
227	Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chemistry, 2016, 18, 5701-5735.	9.0	142
228	Microbial degradation of high impact polystyrene (HIPS), an e-plastic with decabromodiphenyl oxide and antimony trioxide. Journal of Hazardous Materials, 2016, 318, 347-354.	12.4	123
229	Solid-state fermentation for the production of biomass valorizing feruloyl esterase. Biocatalysis and Agricultural Biotechnology, 2016, 7, 7-13.	3.1	7
230	Novel enzymatic processes applied to the food industry. Current Opinion in Food Science, 2016, 7, 64-72.	8.0	76
231	Detoxification of acidic biorefinery waste liquor for production of high value amino acid. Bioresource Technology, 2016, 213, 270-275.	9.6	25
232	Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation. Bioresource Technology, 2016, 213, 216-221.	9.6	131
233	Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. Bioresource Technology, 2016, 213, 222-230.	9.6	83
234	Hydrotropic pretreatment on rice straw for bioethanol production. Renewable Energy, 2016, 98, 2-8.	8.9	51

#	Article	IF	Citations
235	Bioconversion of sugarcane crop residue for value added products – An overview. Renewable Energy, 2016, 98, 203-215.	8.9	176
236	Evaluation of oil palm front hydrolysate as a novel substrate for 2,3-butanediol production using a novel isolate Enterobacter cloacae SG1. Renewable Energy, 2016, 98, 216-220.	8.9	23
237	Material balance studies for the conversion of sorghum stover to bioethanol. Biomass and Bioenergy, 2016, 85, 48-52.	5.7	24
238	An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production. Bioresource Technology, 2016, 199, 13-20.	9.6	86
239	Biological pretreatment of lignocellulosic biomass – An overview. Bioresource Technology, 2016, 199, 76-82.	9.6	868
240	Development of a novel sequential pretreatment strategy for the production of bioethanol from sugarcane trash. Bioresource Technology, 2016, 199, 202-210.	9.6	88
241	Production and characterization of PHB from a novel isolate Comamonas sp. from a dairy effluent sample and its application in cell culture. Biochemical Engineering Journal, 2015, 101, 150-159.	3.6	24
242	Biocatalysis. , 2015, , 391-408.		4
243	White Biotechnology in Biosurfactants. , 2015, , 499-521.		20
244	Microbial Poly-3-Hydroxybutyrate and Related Copolymers. , 2015, , 575-605.		21
245	Industrial Enzymes. , 2015, , 473-497.		22
246	White Biotechnology in Cosmetics. , 2015, , 607-652.		27
247	Alkaline Treatment. , 2015, , 51-60.		13
248	Production of an alkaline xylanase from recombinant Kluyveromyces lactis (KY1) by submerged fermentation and its application in bio-bleaching. Biochemical Engineering Journal, 2015, 102, 24-30.	3.6	25
249	Cloning and expression of l-asparaginase from E. coli in eukaryotic expression system. Biochemical Engineering Journal, 2015, 102, 14-17.	3.6	36
250	Replacement P212H Altered the pH–Temperature Profile of Phytase from Aspergillus niger NII 08121. Applied Biochemistry and Biotechnology, 2015, 175, 3084-3092.	2.9	11
251	2,4-Di-tert-butyl phenol as the antifungal, antioxidant bioactive purified from a newly isolated Lactococcus sp International Journal of Food Microbiology, 2015, 211, 44-50.	4.7	168
252	Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT - Food Science and Technology, 2015, 64, 1179-1186.	5.2	175

#	Article	IF	Citations
253	Physicochemical Characterization of an Exopolysaccharide Produced by a Newly Isolated Weissella cibaria. Applied Biochemistry and Biotechnology, 2015, 176, 440-453.	2.9	30
254	Rice straw hydrolysate to fuel and volatile fatty acid conversion by Clostridium sporogenes BE01: bio-electrochemical analysis of the electron transport mediators involved. Green Chemistry, 2015, 17, 3047-3058.	9.0	32
255	Crude oil biodegradation aided by biosurfactants from Pseudozyma sp. NII 08165 or its culture broth. Bioresource Technology, 2015, 191, 133-139.	9.6	151
256	Current perspectives in enzymatic saccharification of lignocellulosic biomass. Biochemical Engineering Journal, 2015, 102, 38-44.	3.6	113
257	Purification and characterisation of an acidic and antifungal chitinase produced by a Streptomyces sp Bioresource Technology, 2015, 188, 195-201.	9.6	72
258	A novel crude glycerol assisted surfactant pretreatment strategy of chili post-harvest residue for bioethanol production. Biofuels, 2015, 6, 383-390.	2.4	8
259	Mixed Cultures Fermentation for the Production of Poly-ß-hydroxybutyrate. Brazilian Archives of Biology and Technology, 2014, 57, 644-652.	0.5	12
260	Biofuels from Biomass. , 2014, , 25-44.		2
261	Esterase Active in Polar Organic Solvents from the Yeast <i>Pseudozyma</i> sp. NII 08165. Enzyme Research, 2014, 2014, 1-10.	1.8	16
262	Solid state fermentation of food waste mixtures for single cell protein, aroma volatiles and fat production. Food Chemistry, 2014, 145, 710-716.	8.2	148
263	Growth and butanol production by Clostridium sporogenes BE01 in rice straw hydrolysate: kinetics of inhibition by organic acids and the strategies for their removal. Biomass Conversion and Biorefinery, 2014, 4, 277-283.	4.6	5
264	Gene cloning and soluble expression of Aspergillus niger phytase in E. coli cytosol via chaperone co-expression. Biotechnology Letters, 2014, 36, 85-91.	2.2	14
265	Bioethanol production from dilute acid pretreated Indian bamboo variety (Dendrocalamus sp.) by separate hydrolysis and fermentation. Industrial Crops and Products, 2014, 52, 169-176.	5.2	77
266	Effect of surface charge alteration on stability of l-asparaginase II from Escherichia sp Enzyme and Microbial Technology, 2014, 56, 15-19.	3.2	35
267	An alkali-thermostable xylanase from Bacillus pumilus functionally expressed in Kluyveromyces lactis and evaluation of its deinking efficiency. Bioresource Technology, 2014, 165, 309-313.	9.6	37
268	Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 2014, 188, 60-66.	4.7	124
269	Low coverage and acceptable effectiveness of single dose of Japanese encephalitis vaccine, Gorakhpur division, Uttar Pradesh, India, 2013. Journal of Infection, 2014, 69, 517-520.	3.3	19
270	Physicochemical characterization of alkali pretreated sugarcane tops and optimization of enzymatic saccharification using response surface methodology. Renewable Energy, 2014, 62, 362-368.	8.9	109

#	Article	IF	Citations
271	Extracellular expression of a thermostable phytase (phyA) in Kluyveromyces lactis. Process Biochemistry, 2014, 49, 1440-1447.	3.7	22
272	Extracellular methionine amino peptidase (MAP) production by Streptomyces gedanensis in solid-state fermentation. Brazilian Archives of Biology and Technology, 2014, 57, 187-193.	0.5	2
273	Development of a novel solid-state fermentation strategy for the production of poly-3-hydroxybutyrate using polyurethane foams by Bacillus sphaericus NII 0838. Annals of Microbiology, 2013, 63, 1265-1274.	2.6	16
274	Studies on structural and physical characteristics of a novel exopolysaccharide from Pseudozyma sp. NII 08165. International Journal of Biological Macromolecules, 2013, 59, 84-89.	7.5	80
275	Highly glucose tolerant \hat{l}^2 -glucosidase from <i>Aspergillus unguis</i> : NII 08123 for enhanced hydrolysis of biomass. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 967-975.	3.0	62
276	Emerging Approaches in Fermentative Production of Statins. Applied Biochemistry and Biotechnology, 2013, 171, 927-938.	2.9	16
277	Discarded Oranges and Brewer's Spent Grains as Promoting Ingredients for Microbial Growth by Submerged and Solid State Fermentation of Agro-industrial Waste Mixtures. Applied Biochemistry and Biotechnology, 2013, 170, 1885-1895.	2.9	28
278	Advances in lipase-catalyzed esterification reactions. Biotechnology Advances, 2013, 31, 1846-1859.	11.7	342
279	Current developments in solid-state fermentation. Biochemical Engineering Journal, 2013, 81, 146-161.	3.6	428
280	Identification and characterization of a highly alkaline and thermotolerant novel xylanase from Streptomyces sp Biologia (Poland), 2013, 68, 1022-1027.	1.5	12
281	Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresource Technology, 2013, 127, 500-507.	9.6	459
282	Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochemical Engineering Journal, 2013, 78, 67-72.	3.6	118
283	Bioethanol production from bamboo (Dendrocalamus sp.) process waste. Biomass and Bioenergy, 2013, 59, 142-150.	5.7	61
284	Biobutanol production from rice straw by a non acetone producing Clostridium sporogenes BE01. Bioresource Technology, 2013, 145, 182-187.	9.6	115
285	Studies on biosurfactants from Pseudozyma sp. NII 08165 and their potential application as laundry detergent additives. Biochemical Engineering Journal, 2013, 78, 85-92.	3.6	62
286	Microbial synthesis of poly-3-hydroxybutyrate and its application as targeted drug delivery vehicle. Bioresource Technology, 2013, 145, 290-296.	9.6	36
287	Upstream Operations of Fermentation Processes. Contemporary Food Engineering, 2013, , 75-88.	0.2	1
288	Bioprocess Optimisation for the Production of Chitinase from <i>Streptomyces</i> sp. Isolated from Coastal Environment Samples from South Kerala. Journal of Chitin and Chitosan Science, 2013, 1, 177-185.	0.3	3

#	Article	IF	CITATIONS
289	Evaluation of polymeric adsorbent resins for efficient detoxification of liquor generated during acid pretreatment of lignocellulosic biomass. Indian Journal of Experimental Biology, 2013, 51, 1012-7.	0.0	5
290	Recent developments in microbial oils production: a possible alternative to vegetable oils for biodiesel without competition with human food?. Brazilian Archives of Biology and Technology, 2012, 55, 29-46.	0.5	84
291	Recombinant Expression and Characterization of l-Asparaginase II from a Moderately Thermotolerant Bacterial Isolate. Applied Biochemistry and Biotechnology, 2012, 167, 973-980.	2.9	9
292	Preparation of poly(l-lactide) blends and biodegradation by Lentzea waywayandensis. Biotechnology Letters, 2012, 34, 2031-2035.	2.2	20
293	Antioxidant and hepatoprotective potential of endo-polysaccharides from Hericium erinaceus grown on tofu whey. International Journal of Biological Macromolecules, 2012, 51, 1140-1146.	7.5	99
294	Surfactant-Assisted Acid Pretreatment of Sugarcane Tops for Bioethanol Production. Applied Biochemistry and Biotechnology, 2012, 167, 1513-1526.	2.9	26
295	An Evaluation of Chemical Pretreatment Methods for Improving Enzymatic Saccharification of Chili Postharvest Residue. Applied Biochemistry and Biotechnology, 2012, 167, 1489-1500.	2.9	23
296	Single-step Purification and Immobilization of MBP–phytase Fusion on Starch Agar Beads: Application in Dephytination of Soy Milk. Applied Biochemistry and Biotechnology, 2012, 167, 981-990.	2.9	21
297	Probiotic fermented foods for health benefits. Engineering in Life Sciences, 2012, 12, 377-390.	3.6	81
298	Production of Potential Vaccine Against Dermatobia hominis for Cattle. Applied Biochemistry and Biotechnology, 2012, 167, 412-424.	2.9	2
299	High temperature pretreatment and hydrolysis of cotton stalk for producing sugars for bioethanol production. Fuel, 2012, 92, 340-345.	6.4	86
300	Energy requirement for alkali assisted microwave and high pressure reactor pretreatments of cotton plant residue and its hydrolysis for fermentable sugar production for biofuel application. Bioresource Technology, 2012, 112, 300-307.	9.6	55
301	Characterization of laccase isoforms produced by Pleurotus ostreatus in solid state fermentation of sugarcane bagasse. Bioresource Technology, 2012, 114, 735-739.	9.6	80
302	Aminopeptidase from <i>Streptomyces gedanensis</i> as a useful Tool for Protein Hydrolysateâ€f Preparations with Improved Functional Properties. Journal of Food Science, 2012, 77, C791-7.	3.1	19
303	Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse. Renewable Energy, 2012, 37, 109-116.	8.9	318
304	Characterization of leucine amino peptidase from Streptomyces gedanensis and its applications for protein hydrolysis. Process Biochemistry, 2012, 47, 234-242.	3.7	10
305	Organosolvent pretreatment and enzymatic hydrolysis of rice straw for the production of bioethanol. World Journal of Microbiology and Biotechnology, 2012, 28, 473-483.	3.6	77
306	Lignocellulosic Bioethanol. , 2011, , 101-122.		30

#	Article	IF	CITATIONS
307	Hydrolysis of Lignocellulosic Biomass for Bioethanol Production. , 2011, , 229-250.		54
308	Plant growth promoting potential of Pontibacter niistensis in cowpea (Vigna unguiculata (L.) Walp.). Applied Soil Ecology, 2011, 49, 250-255.	4.3	34
309	Production and characterization of poly-3-hydroxybutyrate from crude glycerol by Bacillus sphaericus NII 0838 and improving its thermal properties by blending with other polymers. Brazilian Archives of Biology and Technology, 2011, 54, 783-794.	0.5	99
310	Production of leucine amino peptidase in lab scale bioreactors using Streptomyces gedanensis. Bioresource Technology, 2011, 102, 8171-8178.	9.6	12
311	Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology, 2011, 102, 10163-10172.	9.6	455
312	Dilute acid pretreatment and enzymatic saccharification of sugarcane tops for bioethanol production. Bioresource Technology, 2011, 102, 10915-10921.	9.6	176
313	Organic solvent adaptation of Gram positive bacteria: Applications and biotechnological potentials. Biotechnology Advances, 2011, 29, 442-452.	11.7	145
314	Growth enhancement of black pepper (Piper nigrum) by a newly isolated Bacillus tequilensis NII-0943. Biologia (Poland), 2011, 66, 801-806.	1.5	15
315	Isolation and characterization of a novel α-amylase from a metagenomic library of Western Ghats of Kerala, India. Biologia (Poland), 2011, 66, 939-944.	1.5	28
316	Potential plant growth-promoting activity of Serratia nematodiphila NII-0928 on black pepper (Piper) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
317	Paracoccus niistensis sp. nov., isolated from forest soil, India. Antonie Van Leeuwenhoek, 2011, 99, 501-506.	1.7	23
318	An Improved Bioprocess for Extracellular l-Leucine Amino Peptidase Production Using Streptomyces gedanensis. Current Microbiology, 2011, 62, 1009-1016.	2.2	6
319	Application of the biorefinery concept to produce l-lactic acid from the soybean vinasse at laboratory and pilot scale. Bioresource Technology, 2011, 102, 1765-1772.	9.6	61
320	Properties of a major \hat{l}^2 -glucosidase-BGL1 from Aspergillus niger NII-08121 expressed differentially in response to carbon sources. Process Biochemistry, 2011, 46, 1521-1524.	3.7	52
321	Proline-Specific Extracellular Aminopeptidase Purified from Streptomyces lavendulae. Applied Biochemistry and Biotechnology, 2011, 163, 994-1001.	2.9	12
322	Micro and macroalgal biomass: A renewable source for bioethanol. Bioresource Technology, 2011, 102, 186-193.	9.6	931
323	Arginine Specific Aminopeptidase from Lactobacillus brevis. Brazilian Archives of Biology and Technology, 2011, 54, 133-133.	0.5	0
324	Characterization of plant growth-promoting rhizobacterium Exiguobacterium NII-0906 for its growth promotion of cowpea (Vigna unguiculata). Biologia (Poland), 2010, 65, 197-203.	1.5	24

#	Article	IF	CITATIONS
325	Molecular cloning, overexpression and characterization of the raw-starch-digesting α-amylase of Bacillus amyloliquefaciens. Biologia (Poland), 2010, 65, 392-398.	1.5	4
326	Investigation on α-Galactosidase Production by Streptomyces griseoloalbus in a Forcefully Aerated Packed-Bed Bioreactor Operating in Solid-State Fermentation Condition. Applied Biochemistry and Biotechnology, 2010, 160, 421-427.	2.9	6
327	Probiotic Bile Salt Hydrolase: Current Developments and Perspectives. Applied Biochemistry and Biotechnology, 2010, 162, 166-180.	2.9	118
328	A Statistical Approach for Optimization of Polyhydroxybutyrate Production by Bacillus sphaericus NCIM 5149 under Submerged Fermentation Using Central Composite Design. Applied Biochemistry and Biotechnology, 2010, 162, 996-1007.	2.9	29
329	Formic Acid as a Potential Pretreatment Agent for the Conversion of Sugarcane Bagasse to Bioethanol. Applied Biochemistry and Biotechnology, 2010, 162, 2313-2323.	2.9	90
330	Isolation and characterization of plant growth promoting bacteria from non-rhizospheric soil and their effect on cowpea (Vigna unguiculata (L.) Walp.) seedling growth. World Journal of Microbiology and Biotechnology, 2010, 26, 1233-1240.	3.6	86
331	Plant growth-promoting activity in newly isolated Bacillus thioparus (NII-0902) from Western ghat forest, India. World Journal of Microbiology and Biotechnology, 2010, 26, 2277-2283.	3.6	24
332	Isolation and characterization of novel plant growth promoting Micrococcus sp NII-0909 and its interaction with cowpea. Plant Physiology and Biochemistry, 2010, 48, 987-992.	5.8	127
333	Potential carbon dioxide fixation by industrially important microalgae. Bioresource Technology, 2010, 101, 5892-5896.	9.6	420
334	Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 2010, 46, 541-549.	3.2	474
335	Bio-ethanol from water hyacinth biomass: An evaluation of enzymatic saccharification strategy. Bioresource Technology, 2010, 101, 925-930.	9.6	119
336	Bioethanol production from rice straw: An overview. Bioresource Technology, 2010, 101, 4767-4774.	9.6	742
337	Lignocellulosic ethanol in India: Prospects, challenges and feedstock availability. Bioresource Technology, 2010, 101, 4826-4833.	9.6	220
338	Folateâ€producing lactic acid bacteria from cow's milk with probiotic characteristics. International Journal of Dairy Technology, 2010, 63, 339-348.	2.8	31
339	Enzymes as Additives or Processing Aids in Food Biotechnology. Enzyme Research, 2010, 2010, 1-2.	1.8	16
340	Arginine specific aminopeptidase from Lactobacillus brevis. Brazilian Archives of Biology and Technology, 2010, 53, 1443-1450.	0.5	11
341	REVIEW: Genome shuffling: A new trend in improved bacterial production of lactic acid. Industrial Biotechnology, 2010, 6, 164-169.	0.8	6
342	Pontibacter niistensis sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2867-2870.	1.7	39

#	Article	IF	CITATION
343	A new alternative to produce gibberellic acid by solid state fermentation. Brazilian Archives of Biology and Technology, 2009, 52, 181-188.	0.5	26
344	Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production. Biotechnology Advances, 2009, 27, 145-152.	11.7	232
345	Production and partial purification of α-amylase from a novel isolate Streptomyces gulbargensis. Journal of Industrial Microbiology and Biotechnology, 2009, 36, 189-194.	3.0	68
346	Application of Response Surface Method for Studying the Role of Dissolved Oxygen and Agitation Speed on Gamma-Linolenic Acid Production. Applied Biochemistry and Biotechnology, 2009, 152, 108-116.	2.9	9
347	Biochemical Characterization of Raw-starch-digesting Alpha Amylase Purified from Bacillus amyloliquefaciens. Applied Biochemistry and Biotechnology, 2009, 158, 653-662.	2.9	55
348	Improvement on Citric Acid Production in Solid-state Fermentation by Aspergillus niger LPB BC Mutant Using Citric Pulp. Applied Biochemistry and Biotechnology, 2009, 158, 72-87.	2.9	34
349	Phytodegradation Potential of Erythrina crista-galli L., Fabaceae, in Petroleum-Contaminated Soil. Applied Biochemistry and Biotechnology, 2009, 157, 10-22.	2.9	32
350	Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 2009, 44, 939-943.	3.7	314
351	Cellulase production using biomass feed stock and its application in lignocellulose saccharification for bio-ethanol production. Renewable Energy, 2009, 34, 421-424.	8.9	411
352	Statistical optimization of l-leucine amino peptidase production from Streptomyces gedanensis IFO 13427 under submerged fermentation using response surface methodology. Biochemical Engineering Journal, 2009, 43, 64-71.	3.6	25
353	Recent advances in solid-state fermentation. Biochemical Engineering Journal, 2009, 44, 13-18.	3.6	638
354	An organic-solvent-tolerant esterase from thermophilic Bacillus licheniformis S-86. Bioresource Technology, 2009, 100, 896-902.	9.6	42
355	Enzymatic synthesis of banana flavour (isoamyl acetate) by Bacillus licheniformis S-86 esterase. Food Research International, 2009, 42, 454-460.	6.2	76
356	Enrichment of \hat{l}^3 -linolenic acid in the lipid extracted from Mucor zychae MTCC 5420. Food Research International, 2009, 42, 449-453.	6.2	16
357	Utilization of soybean vinasse for α-galactosidase production. Food Research International, 2009, 42, 476-483.	6.2	21
358	Biotechnological process for producing black bean slurry without stachyose. Food Research International, 2009, 42, 425-429.	6.2	12
359	Immobilized bacterial α-amylase for effective hydrolysis of raw and soluble starch. Food Research International, 2009, 42, 436-442.	6.2	48
360	Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues. , 2009, , 197-221.		31

#	Article	IF	CITATIONS
361	Isolation and Characterization of High-Strength Phenol-Degrading Novel Bacterium of the <i>Pantoea </i> Genus. Bioremediation Journal, 2009, 13, 171-179.	2.0	15
362	Polyhydroxybutyrate production using agro-industrial residue as substrate by Bacillus sphaericus NCIM 5149. Brazilian Archives of Biology and Technology, 2009, 52, 17-23.	0.5	80
363	Compactin production in solid-state fermentation using orthogonal array method by P. brevicompactum. Biochemical Engineering Journal, 2008, 41, 295-300.	3.6	24
364	Effect of light on growth, pigment production and culture morphology of Monascus purpureus in solid-state fermentation. World Journal of Microbiology and Biotechnology, 2008, 24, 2671-2675.	3.6	61
365	Exploration of fungal spores as a possible storehouse of proteolytic biocatalysts. World Journal of Microbiology and Biotechnology, 2008, 24, 2897-2901.	3.6	1
366	Cellulase Production Under Solid-State Fermentation by Trichoderma reesei RUT C30: Statistical Optimization of Process Parameters. Applied Biochemistry and Biotechnology, 2008, 151, 122-131.	2.9	108
367	Production and Purification of a Solvent-Resistant Esterase from Bacillus licheniformis S-86. Applied Biochemistry and Biotechnology, 2008, 151, 221-232.	2.9	17
368	Production and Characterization of the Exopolysaccharides Produced by Agaricus brasiliensis in Submerged Fermentation. Applied Biochemistry and Biotechnology, 2008, 151, 283-294.	2.9	35
369	Batch Fermentation Model of Propionic Acid Production by Propionibacterium acidipropionici in Different Carbon Sources. Applied Biochemistry and Biotechnology, 2008, 151, 333-341.	2.9	99
370	Selection and Optimization of Bacillus atrophaeus Inoculum Medium and its Effect on Spore Yield and Thermal Resistance. Applied Biochemistry and Biotechnology, 2008, 151, 380-392.	2.9	12
371	Fed-batch Production of Gluconic Acid by Terpene-treated Aspergillus niger Spores. Applied Biochemistry and Biotechnology, 2008, 151, 413-423.	2.9	8
372	Fatty Acid Profiling During Microbial Lipid Production Under Varying pO2 and Impeller Tip Speeds. Applied Biochemistry and Biotechnology, 2008, 151, 599-609.	2.9	16
373	Permeabilization and inhibition of the germination of spores of Aspergillus niger for gluconic acid production from glucose. Bioresource Technology, 2008, 99, 4559-4565.	9.6	19
374	Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens. Bioresource Technology, 2008, 99, 4597-4602.	9.6	211
375	Production of bio-ethanol from soybean molasses by Saccharomyces cerevisiae at laboratory, pilot and industrial scales. Bioresource Technology, 2008, 99, 8156-8163.	9.6	143
376	Trends in non-dairy probiotic beverages. Food Research International, 2008, 41, 111-123.	6.2	415
377	Production of Enzymes by Solid-state Fermentation. , 2008, , 183-204.		14
378	General Considerations about Solid-state Fermentation Processes. , 2008, , 13-25.		6

#	Article	IF	Citations
379	Production of Organic Acids by Solid-state Fermentation. , 2008, , 205-229.		14
380	Production of Spores. , 2008, , 230-252.		2
381	Mushroom Production. , 2008, , 253-274.		7
382	Production of Pigments., 2008,, 337-355.		5
383	Production of Aroma Compounds. , 2008, , 356-376.		5
384	Application of Tropical Agro-industrial Residues as Substrate for Solid-state Fermentation Processes. , 2008, , 412-442.		15
385	Kinetics of Solid-state Fermentation. , 2008, , 48-73.		0
386	Bioethanol from Starchy Biomass Part I Production of Starch Saccharifying Enzymes., 2008,, 87-103.		2
387	L(+)-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins. Brazilian Archives of Biology and Technology, 2008, 51, 1241-1248.	0.5	29
388	Characterisation of Laccase from Pycnoporus sanguineus KUM 60953 and KUM 60954. Journal of Biological Sciences, 2008, 8, 866-873.	0.3	4
389	Effect of nutritional and environmental conditions on the production of exo-polysaccharide of Agaricus brasiliensis by submerged fermentation and its antitumor activity. LWT - Food Science and Technology, 2007, 40, 30-35.	5.2	53
390	Production of L(+) lactic acid from cassava starch hydrolyzate by immobilizedLactobacillus delbrueckii. Journal of Basic Microbiology, 2007, 47, 25-30.	3.3	21
391	Effect of stress on growth, pigment production and morphology of Monascus sp. in solid cultures. Journal of Basic Microbiology, 2007, 47, 118-126.	3.3	75
392	Oil cakes and their biotechnological applications – A review. Bioresource Technology, 2007, 98, 2000-2009.	9.6	401
393	Fungal biosynthesis of endochitinase and chitobiase in solid state fermentation and their application for the production of N-acetyl-d-glucosamine from colloidal chitin. Bioresource Technology, 2007, 98, 2742-2748.	9.6	54
394	Statistical optimization of simultaneous saccharification and l(+)-lactic acid fermentation from cassava bagasse using mixed culture of lactobacilli by response surface methodology. Biochemical Engineering Journal, 2007, 36, 262-267.	3.6	60
395	Solid-state fermentation for the production of Monascus pigments from jackfruit seed. Bioresource Technology, 2007, 98, 1554-1560.	9.6	176
396	Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Applied Microbiology and Biotechnology, 2007, 74, 524-534.	3.6	499

#	Article	IF	CITATIONS
397	Improved Cellulase Production by Trichoderma reesei RUT C30 under SSF Through Process Optimization. Applied Biochemistry and Biotechnology, 2007, 142, 60-70.	2.9	114
398	Rice bran as a substrate for proteolytic enzyme production. Brazilian Archives of Biology and Technology, 2006, 49, 843-851.	0.5	34
399	Effect of caffeine and tannins on cultivation and fructification of Pleurotus on coffee husks. Brazilian Journal of Microbiology, 2006, 37, 420-424.	2.0	15
400	Comparison of phytase production on wheat bran and oilcakes in solid-state fermentation by Mucor racemosus. Bioresource Technology, 2006, 97, 506-511.	9.6	106
401	Relation between growth, respirometric analysis and biopigments production from Monascus by solid-state fermentation. Biochemical Engineering Journal, 2006, 29, 262-269.	3.6	52
402	Tannase production by Lactobacillus sp. ASR-S1 under solid-state fermentation. Process Biochemistry, 2006, 41, 575-580.	3.7	109
403	Solid-state fermentation for l-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochemistry, 2006, 41, 759-763.	3.7	178
404	Metabolic engineering approaches for lactic acid production. Process Biochemistry, 2006, 41, 991-1000.	3.7	85
405	Simultaneous Saccharification and Fermentation of Cassava Bagasse for L-(+)-Lactic Acid Production Using Lactobacilli. Applied Biochemistry and Biotechnology, 2006, 134, 263-272.	2.9	67
406	Simultaneous saccharification and L-(+)-lactic acid fermentation of protease-treated wheat bran using mixed culture of lactobacilli. Biotechnology Letters, 2006, 28, 1823-1826.	2.2	38
407	Statistical approach to optimization of fermentative production of gellan gum from Sphingomonas paucimobilis ATCC 31461. Journal of Bioscience and Bioengineering, 2006, 102, 150-156.	2.2	59
408	Glucoamylase., 2006,, 221-237.		4
409	Therapeutic Enzymes., 2006,, 697-707.		0
410	Chitinases. , 2006, , 433-448.		0
411	Proteases. , 2006, , 319-332.		2
412	Inulinases., 2006,, 347-358.		2
413	Phytase., 2006,, 359-380.		0
414	Mixed substrate fermentation for the production of phytase by Rhizopus spp. using oilcakes as substrates. Process Biochemistry, 2005, 40, 1749-1754.	3.7	93

#	Article	IF	Citations
415	Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 2005, 40, 2689-2694.	3.7	278
416	Production and purification of extracellular chitinases from Penicillium aculeatum NRRL 2129 under solid-state fermentation. Enzyme and Microbial Technology, 2005, 36, 880-887.	3.2	47
417	Comparative Study of Amidase Production by Free and Immobilized <i>Escherichia coli</i> Cells. Applied Biochemistry and Biotechnology, 2005, 120, 097-108.	2.9	10
418	Microbial Synthesis of Chitinase in Solid Cultures and Its Potential as a Biocontrol Agent Against Phytopathogenic Fungus <i>Colletotrichum gloeosporioides</i> . Applied Biochemistry and Biotechnology, 2005, 127, 001-016.	2.9	18
419	L(+)-Lactic Acid Production Using Lactobacillus Casei in Solid-State Fermentation. Biotechnology Letters, 2005, 27, 1685-1688.	2.2	56
420	Biopigments from Monascus: strains selection, citrinin production and color stability. Brazilian Archives of Biology and Technology, 2005, 48, 885-894.	0.5	86
421	Eco-epidemiological survey of Leishmania (Viannia) braziliensis American cutaneous and mucocutaneous leishmaniasis in Ribeira Valley River, ParanÃ; State, Brazil. Acta Tropica, 2005, 93, 141-149.	2.0	44
422	Alpha amylase from a fungal culture grown on oil cakes and its properties. Brazilian Archives of Biology and Technology, 2004, 47, 309-317.	0.5	74
423	Kinetics of Gibberella fujikuroi Growth and Gibberellic Acid Production by Solid-State Fermentation in a Packed-Bed Column Bioreactor. Biotechnology Progress, 2004, 20, 1449-1453.	2.6	29
424	Development of a Bionematicide With <i>Paecilomyces lilacinus</i> to Control <i>Meloidogyne incognita</i> . Applied Biochemistry and Biotechnology, 2004, 118, 081-088.	2.9	32
425	Production of Chitinolytic Enzymes With <i>Trichoderma longibrachiatum</i> IMI 92027 in Solid Substrate Fermentation. Applied Biochemistry and Biotechnology, 2004, 118, 189-204.	2.9	17
426	Thermostable Phytase Production by <i>Thermoascus aurantiacus</i> in Submerged Fermentation. Applied Biochemistry and Biotechnology, 2004, 118, 205-214.	2.9	71
427	Comparison of Citric Acid Production by Solid-State Fermentation in Flask, Column, Tray, and Drum Bioreactors. Applied Biochemistry and Biotechnology, 2004, 118, 293-304.	2.9	30
428	Xanthan Gum Production From Cassava Bagasse Hydrolysate With <i>Xanthomonas campestris </i> Using Alternative Sources of Nitrogen. Applied Biochemistry and Biotechnology, 2004, 118, 305-312.	2.9	23
429	Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 2004, 39, 1583-1590.	3.7	116
430	Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. Journal of Basic Microbiology, 2004, 44, 49-58.	3.3	81
431	Coconut oil cake––a potential raw material for the production of α-amylase. Bioresource Technology, 2004, 93, 169-174.	9.6	194
432	Biosynthesis of rifamycin SV by Amycolatopsis mediterranei MTCC17 in solid cultures. Biotechnology and Applied Biochemistry, 2003, 37, 311.	3.1	10

#	Article	IF	CITATIONS
433	Characterization and stability of proteases from Penicillium sp. produced by solid-state fermentation. Enzyme and Microbial Technology, 2003, 32, 246-251.	3.2	115
434	Fermentative production of gellan using Sphingomonas paucimobilis. Process Biochemistry, 2003, 38, 1513-1519.	3.7	87
435	Solid-state fermentation. Biochemical Engineering Journal, 2003, 13, 81-84.	3.6	916
436	Use of response surface methodology for optimizing process parameters for the production of \hat{l}_{\pm} -amylase by Aspergillus oryzae. Biochemical Engineering Journal, 2003, 15, 107-115.	3.6	307
437	Production of Phytase by Mucor racemosus in Solid-State Fermentation. Biotechnology Progress, 2003, 19, 312-319.	2.6	79
438	Synthesis of -amylase by Aspergillus oryzae in solid-state fermentation. Journal of Basic Microbiology, 2002, 42, 320-326.	3.3	36
439	Microbial production of extra-cellular phytase using polystyrene as inert solid support. Bioresource Technology, 2002, 83, 229-233.	9.6	74
440	Extra-cellular l-glutaminase production by Zygosaccharomyces rouxii under solid-state fermentation. Process Biochemistry, 2002, 38, 307-312.	3.7	125
441	Relationship Between Coffee Husk Caffeine Degradation and Respiration of Aspergillus sp. LPBx in Solid-State Fermentation. Applied Biochemistry and Biotechnology, 2002, 102-103, 169-178.	2.9	13
442	Gibberellic Acid Production by Solid-State Fermentation in Coffee Husk. Applied Biochemistry and Biotechnology, 2002, 102-103, 179-192.	2.9	49
443	Solid-State Fermentation for Production of Phytase by Rhizopus oligosporus. Applied Biochemistry and Biotechnology, 2002, 102-103, 251-260.	2.9	75
444	Acid and enzymatic hydrolysis to recover reducing sugars from cassava bagasse: an economic study. Brazilian Archives of Biology and Technology, 2002, 45, 393-400.	0.5	66
445	Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 2001, 44, 213-221.	0.5	57
446	Production of Flammulina velutipes on coffee husk and coffee spent-ground. Brazilian Archives of Biology and Technology, 2001, 44, 205-212.	0.5	92
447	Production, purification and properties of microbial phytases. Bioresource Technology, 2001, 77, 203-214.	9.6	256
448	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 767-771.	3.6	68
449	Solid state cultivation — an efficient method to use toxic agro-industrial residues. Journal of Basic Microbiology, 2000, 40, 187-197.	3.3	56
450	Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme and Microbial Technology, 2000, 27, 127-133.	3.2	138

#	Article	IF	CITATIONS
451	New developments in solid state fermentation: I-bioprocesses and products. Process Biochemistry, 2000, 35, 1153-1169.	3.7	865
452	New developments in solid-state fermentation. Process Biochemistry, 2000, 35, 1211-1225.	3.7	184
453	Evaluation of Amycolatopsis mediterranei VA18 for production of rifamycin-B. Process Biochemistry, 2000, 36, 305-309.	3.7	22
454	Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. Process Biochemistry, 2000, 35, 857-861.	3.7	112
455	Optimization of the production of aroma compounds by Kluyveromyces marxianus in solid-state fermentation using factorial design and response surface methodology. Biochemical Engineering Journal, 2000, 6, 33-39.	3. 6	103
456	Biotechnological potential of coffee pulp and coffee husk for bioprocesses. Biochemical Engineering Journal, 2000, 6, 153-162.	3.6	361
457	Solid-state fermentation for the synthesis of citric acid by Aspergillus niger. Bioresource Technology, 2000, 74, 175-178.	9.6	151
458	Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresource Technology, 2000, 74, 69-80.	9.6	961
459	Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technology, 2000, 74, 81-87.	9.6	343
460	Isolation, identification and physiological study of Lactobacillus fermentum LPB for use as probiotic in chickens. Brazilian Journal of Microbiology, 2000, 31, 303.	2.0	17
461	Isolation and characterization of three distinct forms of lipases from Candida rugosa produced in solid state fermentation. Brazilian Archives of Biology and Technology, 2000, 43, 453-460.	0.5	14
462	Advances in microbial amylases. Biotechnology and Applied Biochemistry, 2000, 31, 135.	3.1	793
463	Production of spores of Trichoderma harzianum on sugar cane molasses and bagasse pith in solid state fermentation for biocontrol. Brazilian Archives of Biology and Technology, 1999, 42, .	0.5	4
464	Microbial production of citric acid. Brazilian Archives of Biology and Technology, 1999, 42, 263-276.	0.5	98
465	Solid state fermentation for the synthesis of inulinase from Staphylococcus sp. and Kluyveromyces marxianus. Process Biochemistry, 1999, 34, 851-855.	3.7	96
466	Experimental design to enhance the production of l-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochemistry, 1999, 34, 949-955.	3.7	52
467	Scale-up strategies for packed-bed bioreactors for solid-state fermentation. Process Biochemistry, 1999, 35, 167-178.	3.7	78
468	Comparative studies on inulinase synthesis by Staphylococcus sp. and Kluyveromyces marxianus in submerged culture. Bioresource Technology, 1999, 69, 123-127.	9.6	26

#	Article	IF	CITATIONS
469	Recent Developments in Microbial Inulinases: Its Production, Properties, and Industrial Applications. Applied Biochemistry and Biotechnology, 1999, 81, 35-52.	2.9	199
470	Inulinase Synthesis from a Mesophilic Culture in Submerged Cultivation. Applied Biochemistry and Biotechnology, 1999, 82, 103-114.	2.9	4
471	Ethanol production in solid substrate fermentation using thermotolerant yeast. Process Biochemistry, 1999, 34, 115-119.	3.7	65
472	Growth kinetics of Rhizopus formosa MUCL 28422 on raw cassava flour in solid state fermentation. Journal of Chemical Technology and Biotechnology, 1999, 74, 580-586.	3.2	6
473	Production and shelf-life studies of low cost beverage with soymilk, buffalo cheese whey and cow milk fermented by mixed cultures ofLactobacillus casei ssp.shirota andBi-fidobacterium adolescentis. Journal of Basic Microbiology, 1999, 39, 243-251.	3.3	19
474	Fermentation and recovery of L-glutamic acid from cassava starch hydrolysate by ion-exchange resin column. Revista De Microbiologia, 1999, 30, 258-264.	0.1	15
475	Genetic tuning of coryneform bacteria for the overproduction of amino acids. Process Biochemistry, 1998, 33, 147-161.	3.7	10
476	Candida rugosa lipases: Molecular biology and versatility in biotechnology. , 1998, 14, 1069-1087.		247
477	Immobilization of Brevibacterium Cells for the production of l-glutamic acid. Bioresource Technology, 1998, 63, 101-106.	9.6	23
478	Biosynthesis of glucoamylase from Aspergillus niger by solid-state fermentation using tea waste as the basis of a solid substrate. Bioresource Technology, 1998, 65, 83-85.	9.6	63
479	Bioconversion of biomass: a case study of ligno-cellulosics bioconversions in solid state fermentation. Brazilian Archives of Biology and Technology, 1998, 41, 379-390.	0.5	65
480	Culture conditions for production of 2-1- \hat{l}^2 -D-Fructan-fructanohydrolase in solid culturing on chicory (Cichorium intybus) roots. Brazilian Archives of Biology and Technology, 1998, 41, .	0.5	4
481	Enhancement of lipase production during repeated batch culture using immobilised Candida rugosa. Process Biochemistry, 1997, 32, 437-440.	3.7	16
482	Performance of a column bioreactor for glucoamylase synthesis by Aspergillus niger in SSF. Process Biochemistry, 1996, 31, 43-46.	3.7	25
483	Growth and cyclosporin a production by an indigenously isolated strain ofTolypocladium inflatum. Folia Microbiologica, 1996, 41, 401-406.	2.3	9
484	Urease activity in a glutamate producing Brevibacterium sp Process Biochemistry, 1996, 31, 471-475.	3.7	7
485	The panorama of cyclosporin research. Journal of Basic Microbiology, 1996, 36, 121-147.	3.3	17
486	Optimization of liquid media for lipase production by Candida rugosa. Bioresource Technology, 1996, 55, 167-170.	9.6	58

#	Article	IF	CITATIONS
487	Solid state fermentation for L-glutamic acid production using Brevibacterium sp Biotechnology Letters, 1996, 18, 199-204.	2.2	62
488	Effect of different carbon sources on growth and glutamic acid fermentation byBrevibacterium sp Journal of Basic Microbiology, 1995, 35, 249-254.	3.3	11
489	Glucoamylase Research: An Overview. Starch/Staerke, 1995, 47, 439-445.	2.1	70
490	Copra waste â€" A novel substrate for solid-state fermentation. Bioresource Technology, 1995, 51, 217-220.	9.6	24
491	Iron requirement and search for siderophores in lactic acid bacteria. Applied Microbiology and Biotechnology, 1994, 40, 735-739.	3. 6	114
492	The production of glucoamylase by Aspergillus niger NCIM 1245. Process Biochemistry, 1993, 28, 305-309.	3.7	42
493	Recent process developments in solid-state fermentation. Process Biochemistry, 1992, 27, 109-117.	3.7	434
494	Production of Starch Saccharifying Enzyme (Glucoamylase) in Solid Cultures. Starch/Staerke, 1992, 44, 75-77.	2.1	30
495	Packed-bed column bioreactor for production of enzyme. Enzyme and Microbial Technology, 1992, 14, 486-488.	3.2	44
496	Aspects of fermenter design for solid-state fermentations. Process Biochemistry, 1991, 26, 355-361.	3.7	98
497	Effect of particle size of substrate of enzyme production in solid-state fermentation. Bioresource Technology, 1991, 37, 169-172.	9.6	58
498	Improvements in solid-state fermentation for glucoamylase production. Biological Wastes, 1990, 34, 11-19.	0.2	47
499	Start-up in anaerobic treatment of natural-rubber effluent. Biological Wastes, 1990, 33, 143-147.	0.2	1
500	Simultaneous saccharification and protein enrichment fermentation of sugar beet pulp. Biotechnology Letters, 1988, 10, 67-72.	2.2	21
501	Fermentation of Bagasse by submerged fungal cultures: Effect of nitrogen sources. Biological Wastes, 1988, 23, 313-317.	0.2	4
502	Process selection for bioconversion of sugar beet pulp into microbial protein. Biological Wastes, 1988, 26, 71-75.	0.2	4
503	Mixed cultures fermentation for bioconversion of whole bagasse into microbial protein. Journal of Basic Microbiology, 1987, 27, 323-327.	3.3	7
504	Cellulase and ligninase production by basidiomycete culture in solid-state fermentation. Biological Wastes, 1987, 20, 1-9.	0.2	26

ASHOK PANDEY

#	Article	IF	CITATIONS
505	Ligninolytic activity of two basidiomycetes cultures in the decomposition of bagasse. Biological Wastes, 1987, 21, 1-10.	0.2	6
506	Obtusilobinin and obtusilobin, two new triterpene saponins from Anemone obtusiloba. Phytochemistry, 1979, 18, 1539-1542.	2.9	9
507	Lactic acid production from molasses by mixed population of lactobacilli. Zentralblatt Fur Bakteriologie, Parasitenkunde, Infektionskrankheiten Und Hygiene Zweite Naturwissenschaftliche Abteilung: Mikrobiologie Der Landwirtschaft Der Technologie Und Des Umweltschutzes, 1979, 134, 544-546.	0.0	6