T-C Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7958218/publications.pdf

Version: 2024-02-01

197 papers 9,970 citations

23567 58 h-index 49909 87 g-index

201 all docs

201 docs citations

201 times ranked

8622 citing authors

#	Article	IF	Citations
1	Prospects of RNA interference therapy for cancer. Gene Therapy, 2006, 13, 464-477.	4.5	322
2	Coronavirus vaccine development: from SARS and MERS to COVID-19. Journal of Biomedical Science, 2020, 27, 104.	7.0	287
3	How will HPV vaccines affect cervical cancer?. Nature Reviews Cancer, 2006, 6, 753-763.	28.4	237
4	Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. Journal of Clinical Investigation, 2001, 108, 669-678.	8.2	225
5	Mucosal Imprinting of Vaccine-Induced CD8 ⁺ T Cells Is Crucial to Inhibit the Growth of Mucosal Tumors. Science Translational Medicine, 2013, 5, 172ra20.	12.4	195
6	A Phase I Trial of a Human Papillomavirus DNA Vaccine for HPV16+ Cervical Intraepithelial Neoplasia 2/3. Clinical Cancer Research, 2009, 15, 361-367.	7.0	186
7	Comparison of the CD8+ T cell responses and antitumor effects generated by DNA vaccine administered through gene gun, biojector, and syringe. Vaccine, 2003, 21, 4036-4042.	3.8	164
8	Generation and Characterization of DNA Vaccines Targeting the Nucleocapsid Protein of Severe Acute Respiratory Syndrome Coronavirus. Journal of Virology, 2004, 78, 4638-4645.	3.4	164
9	Immunotherapy of a human papillomavirus (HPV) type 16 E7-expressing tumour by administration of fusion protein comprising Mycobacterium bovis bacille Calmette-GuÃ@rin (BCG) hsp65 and HPV16 E7. Clinical and Experimental Immunology, 2000, 121, 216-225.	2.6	161
10	Therapeutic human papillomavirus vaccines: current clinical trials and future directions. Expert Opinion on Biological Therapy, 2008, 8, 421-439.	3.1	156
11	Pretreatment with Cisplatin Enhances E7-Specific CD8+ T-Cell–Mediated Antitumor Immunity Induced by DNA Vaccination. Clinical Cancer Research, 2008, 14, 3185-3192.	7.0	143
12	Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. Journal of Clinical Investigation, 2003, 112, 109-117.	8.2	142
13	Improving Vaccine Potency Through Intercellular Spreading and Enhanced MHC Class I Presentation of Antigen. Journal of Immunology, 2001, 166, 5733-5740.	0.8	140
14	Cervical Cancer Immunotherapy: Facts and Hopes. Clinical Cancer Research, 2021, 27, 4953-4973.	7.0	129
15	Antigen-specific immunotherapy for murine lung metastatic tumors expressing human papillomavirus type 16 E7 oncoprotein., 1998, 78, 41-45.		116
16	Development of a DNA Vaccine Targeting Human Papillomavirus Type 16 Oncoprotein E6. Journal of Virology, 2004, 78, 8468-8476.	3.4	116
17	Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine, 2009, 27, 5450-5459.	3.8	114
18	Intramuscular administration of E7-transfected dendritic cells generates the most potent E7-specific anti-tumor immunity. Gene Therapy, 2000, 7, 726-733.	4.5	110

#	Article	IF	CITATIONS
19	Cancer Immunotherapy Using Sindbis Virus Replicon Particles Encoding a VP22–Antigen Fusion. Human Gene Therapy, 2002, 13, 553-568.	2.7	110
20	Epigallocatechin-3-Gallate Enhances CD8+ T Cell–Mediated Antitumor Immunity Induced by DNA Vaccination. Cancer Research, 2007, 67, 802-811.	0.9	110
21	Therapeutic HPV DNA vaccines. Immunologic Research, 2010, 47, 86-112.	2.9	107
22	Enhancement of suicidal DNA vaccine potency by linking Mycobacterium tuberculosis heat shock protein 70 to an antigen. Gene Therapy, 2001, 8, 376-383.	4.5	104
23	Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Therapy, 2004, 11, 1011-1018.	4.5	104
24	Vaccination to prevent and treat cervical cancer. Human Pathology, 2004, 35, 971-982.	2.0	102
25	Focus on endometrial and cervical cancer. Cancer Cell, 2004, 5, 533-538.	16.8	99
26	Immunotherapy for human papillomavirus-associated disease and cervical cancer: review of clinical and translational research. Journal of Gynecologic Oncology, 2016, 27, e51.	2.2	99
27	The Role of Vascular Cell Adhesion Molecule-1 in Tumor Immune Evasion. Cancer Research, 2007, 67, 6003-6006.	0.9	98
28	Perspectives for Preventive and Therapeutic HPV Vaccines. Journal of the Formosan Medical Association, 2010, 109, 4-24.	1.7	96
29	Improving therapeutic HPV peptide-based vaccine potency by enhancing CD4+ T help and dendritic cell activation. Journal of Biomedical Science, 2010, 17, 88.	7.0	92
30	Immunotherapy for Cervical Cancer. BioDrugs, 2010, 24, 109-129.	4.6	92
31	Chemotherapy Acts as an Adjuvant to Convert the Tumor Microenvironment into a Highly Permissive State for Vaccination-Induced Antitumor Immunity. Cancer Research, 2013, 73, 2493-2504.	0.9	90
32	A pilot study of pNGVL4a-CRT/E7(detox) for the treatment of patients with HPV16 + cervical intraepithelial neoplasia 2/3 (CIN2/3). Gynecologic Oncology, 2016, 140, 245-252.	1.4	90
33	Current state in the development of candidate therapeutic HPV vaccines. Expert Review of Vaccines, 2016, 15, 989-1007.	4.4	90
34	Enhancing DNA Vaccine Potency by Combining a Strategy to Prolong Dendritic Cell Life with Intracellular Targeting Strategies. Journal of Immunology, 2003, 171, 2970-2976.	0.8	87
35	Improving DNA Vaccine Potency by Linking Marek's Disease Virus Type 1 VP22 to an Antigen. Journal of Virology, 2002, 76, 2676-2682.	3.4	83
36	Boosting with recombinant vaccinia increases HPV-16 E7-specific T cell precursor frequencies of HPV-16 E7-expressing DNA vaccines. Vaccine, 2000, 18, 2015-2022.	3.8	81

#	Article	IF	Citations
37	Cancer immunotherapy using a DNA vaccine encoding a single-chain trimer of MHC class I linked to an HPV-16 E6 immunodominant CTL epitope. Gene Therapy, 2005, 12, 1180-1186.	4.5	81
38	Diffuse Mesothelin Expression Correlates with Prolonged Patient Survival in Ovarian Serous Carcinoma. Clinical Cancer Research, 2006, 12, 827-831.	7.0	81
39	Ectopic Expression of Vascular Cell Adhesion Molecule-1 as a New Mechanism for Tumor Immune Evasion. Cancer Research, 2007, 67, 1832-1841.	0.9	81
40	Enhancement of Sindbis Virus Self-Replicating RNA Vaccine Potency by Linkage of Herpes Simplex Virus Type 1 VP22 Protein to Antigen. Journal of Virology, 2001, 75, 2368-2376.	3.4	80
41	Activation of Akt as a Mechanism for Tumor Immune Evasion. Molecular Therapy, 2009, 17, 439-447.	8.2	80
42	Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Research, 2005, 65, 309-16.	0.9	79
43	Gene gun-mediated DNA vaccination induces antitumor immunity against human papillomavirus type 16 E7-expressing murine tumor metastases in the liver and lungs. Gene Therapy, 1999, 6, 1972-1981.	4.5	77
44	DNA Vaccines Encoding Ii-PADRE Generates Potent PADRE-specific CD4+ T-Cell Immune Responses and Enhances Vaccine Potency. Molecular Therapy, 2007, 15, 1211-1219.	8.2	75
45	Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. Journal of Clinical Investigation, 2003, 112, 109-117.	8.2	73
46	Enhancement of Sindbis Virus Self-Replicating RNA Vaccine Potency by Targeting Antigen to Endosomal/Lysosomal Compartments. Human Gene Therapy, 2001, 12, 235-252.	2.7	72
47	Cancer Vaccination Drives Nanog-Dependent Evolution of Tumor Cells toward an Immune-Resistant and Stem-like Phenotype. Cancer Research, 2012, 72, 1717-1727.	0.9	72
48	Immune Mechanism of the Antitumor Effects Generated by Bortezomib. Journal of Immunology, 2012, 189, 3209-3220.	0.8	71
49	Local HPV Recombinant Vaccinia Boost Following Priming with an HPV DNA Vaccine Enhances Local HPV-Specific CD8+ T-cell–Mediated Tumor Control in the Genital Tract. Clinical Cancer Research, 2016, 22, 657-669.	7.0	71
50	DNA vaccines for cervical cancer: from bench to bedside. Experimental and Molecular Medicine, 2007, 39, 679-689.	7.7	68
51	Molecular Epidemiology of Human Papillomavirus. Journal of the Formosan Medical Association, 2008, 107, 198-217.	1.7	68
52	Antigen-specific cancer immunotherapy using a GM-CSF secreting allogeneic tumor cell-based vaccine. , 2000, 86, 725-730.		64
53	Vaccination with Dendritic Cells Transfected with BAK and BAX siRNA Enhances Antigen-Specific Immune Responses by Prolonging Dendritic Cell Life. Human Gene Therapy, 2005, 16, 584-593.	2.7	64
54	Enhancing DNA vaccine potency by modifying the properties of antigen-presenting cells. Expert Review of Vaccines, 2007, 6, 227-239.	4.4	63

#	Article	IF	Citations
55	Low-dose cyclophosphamide administered as daily or single dose enhances the antitumor effects of a therapeutic HPV vaccine. Cancer Immunology, Immunotherapy, 2013, 62, 171-182.	4.2	63
56	D <scp>evelopment of</scp> HPV V <scp>accines for</scp> HPV <scp>-associated</scp> H <scp>ead and</scp> N <scp>eck</scp> S <scp>quamous</scp> C <scp>ell</scp> C <scp>arcinoma</scp> . Critical Reviews in Oral Biology and Medicine, 2003, 14, 345-362.	4.4	62
57	Emerging human papillomavirus vaccines. Expert Opinion on Emerging Drugs, 2012, 17, 469-492.	2.4	62
58	Enhancement of Sindbis Virus Self-Replicating RNA Vaccine Potency by Linkage of <i>Mycobacterium tuberculosis </i> Heat Shock Protein 70 Gene to an Antigen Gene. Journal of Immunology, 2001, 166, 6218-6226.	0.8	61
59	Vaccination with a DNA Vaccine Encoding Herpes Simplex Virus Type 1 VP22 Linked to Antigen Generates Long-Term Antigen-Specific CD8-Positive Memory T Cells and Protective Immunity. Human Gene Therapy, 2004, 15, 167-177.	2.7	61
60	Expression of ILâ€15RA or an ILâ€15/ILâ€15RA fusion on CD8 ⁺ T cells modifies adoptively transferred Tâ€cell function in <i>cis</i> i>. European Journal of Immunology, 2009, 39, 491-506.	2.9	59
61	Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunology, Immunotherapy, 2009, 58, 737-748.	4.2	59
62	Enhancement of DNA Vaccine Potency by Coadministration of a Tumor Antigen Gene and DNA Encoding Serine Protease Inhibitor-6. Cancer Research, 2004, 64, 400-405.	0.9	58
63	Enhancement of vaccinia vaccine potency by linkage of tumor antigen gene to gene encoding calreticulin. Vaccine, 2004, 22, 3993-4001.	3.8	58
64	A DNA vaccine encoding a single-chain trimer of HLA-A2 linked to human mesothelin peptide generates anti-tumor effects against human mesothelin-expressing tumors. Vaccine, 2007, 25, 127-135.	3.8	57
65	Generation and characterization of a preventive and therapeutic HPV DNA vaccine. Vaccine, 2008, 26, 351-360.	3.8	56
66	CD8+ T cells, NK cells and IFN- \hat{I}^3 are important for control of tumor with downregulated MHC class I expression by DNA vaccination. Gene Therapy, 2003, 10, 1311-1320.	4.5	54
67	Development of a DNA vaccine targeting Merkel cell polyomavirus. Vaccine, 2012, 30, 1322-1329.	3.8	54
68	Enhancing the Therapeutic Effect Against Ovarian Cancer Through a Combination of Viral Oncolysis and Antigen-specific Immunotherapy. Molecular Therapy, 2010, 18, 692-699.	8.2	53
69	Enhancing major histocompatibility complex class I antigen presentation by targeting antigen to centrosomes. Cancer Research, 2003, 63, 2393-8.	0.9	52
70	Control of mesothelin-expressing ovarian cancer using adoptive transfer of mesothelin peptide-specific CD8+ T cells. Gene Therapy, 2007, 14, 921-929.	4.5	49
71	Carrageenan as an adjuvant to enhance peptide-based vaccine potency. Vaccine, 2010, 28, 5212-5219.	3.8	49
72	Enhanced Cancer Radiotherapy through Immunosuppressive Stromal Cell Destruction in Tumors. Clinical Cancer Research, 2014, 20, 644-657.	7.0	49

#	Article	IF	CITATIONS
73	Toll-like Receptor Agonist Imiquimod Facilitates Antigen-Specific CD8+ T-cell Accumulation in the Genital Tract Leading to Tumor Control through IFNI ³ . Clinical Cancer Research, 2014, 20, 5456-5467.	7.0	49
74	Integrating chemical and mechanical signals through dynamic coupling between cellular protrusions and pulsed ERK activation. Nature Communications, 2018, 9, 4673.	12.8	48
75	Characterization of HLA-A2-restricted HPV-16 E7-specific CD8+ T-cell immune responses induced by DNA vaccines in HLA-A2 transgenic mice. Gene Therapy, 2006, 13, 67-77.	4.5	47
76	Vaccinia virus preferentially infects and controls human and murine ovarian tumors in mice. Gene Therapy, 2007, 14, 20-29.	4.5	46
77	Gain of HIF- $1\hat{l}\pm$ under Normoxia in Cancer Mediates Immune Adaptation through the AKT/ERK and VEGFA Axes. Clinical Cancer Research, 2015, 21, 1438-1446.	7.0	46
78	The current state of therapeutic and T cell-based vaccines against human papillomaviruses. Virus Research, 2017, 231, 148-165.	2.2	46
79	Enhancement of suicidal DNA vaccine potency by delaying suicidal DNA-induced cell death. Gene Therapy, 2004, 11, 336-342.	4.5	45
80	Therapeutic HPV DNA vaccines. Expert Review of Vaccines, 2009, 8, 1221-1235.	4.4	45
81	A combination of DNA vaccines targeting human papillomavirus type 16 E6 and E7 generates potent antitumor effects. Gene Therapy, 2006, 13, 257-265.	4.5	44
82	Therapeutic DNA Vaccines for Human Papillomavirus and Associated Diseases. Human Gene Therapy, 2018, 29, 971-996.	2.7	44
83	Boosting with recombinant vaccinia increases HPV-16 E7-Specific T cell precursor frequencies and antitumor effects of HPV-16 E7-Expressing sindbis virus replicon particles. Molecular Therapy, 2003, 8, 559-566.	8.2	43
84	Monitoring the Trafficking of Adoptively Transferred Antigen- Specific CD8-Positive T Cells In Vivo, Using Noninvasive Luminescence Imaging. Human Gene Therapy, 2007, 18, 575-588.	2.7	43
85	Enhancement of DNA Vaccine Potency through Coadministration of CIITA DNA with DNA Vaccines via Gene Gun. Journal of Immunology, 2008, 180, 7019-7027.	0.8	43
86	Treatment With Cyclooxygenase-2 Inhibitors Enables Repeated Administration of Vaccinia Virus for Control of Ovarian Cancer. Molecular Therapy, 2009, 17, 1365-1372.	8.2	43
87	Enhancement of dendritic cell-based vaccine potency by targeting antigen to endosomal/lysosomal compartments. Immunology Letters, 2006, 106, 126-134.	2.5	42
88	Enhancement of Antibody Responses to <i>Bacillus anthracis</i> Protective Antigen Domain IV by Use of Calreticulin as a Chimeric Molecular Adjuvant. Infection and Immunity, 2008, 76, 1952-1959.	2.2	42
89	LAH4 enhances CD8+ T cell immunity of protein/peptide-based vaccines. Vaccine, 2012, 30, 784-793.	3.8	42
90	Control of human mesothelin-expressing tumors by DNA vaccines. Gene Therapy, 2007, 14, 1189-1198.	4.5	41

#	Article	IF	CITATIONS
91	Stringent Response Factors PPX1 and PPK2 Play an Important Role in Mycobacterium tuberculosis Metabolism, Biofilm Formation, and Sensitivity to Isoniazid <i>In Vivo</i> . Antimicrobial Agents and Chemotherapy, 2016, 60, 6460-6470.	3.2	41
92	Development of DNA Vaccine Targeting E6 and E7 Proteins of Human Papillomavirus 16 (HPV16) and HPV18 for Immunotherapy in Combination with Recombinant Vaccinia Boost and PD-1 Antibody. MBio, $2021, 12, .$	4.1	41
93	Treatment with Imiquimod enhances antitumor immunity induced by therapeutic HPV DNA vaccination. Journal of Biomedical Science, 2010, 17, 32.	7.0	40
94	Preventative and therapeutic vaccines for cervical cancer. Expert Review of Vaccines, 2003, 2, 495-516.	4.4	38
95	Enhancing dendritic cell vaccine potency by combining a BAK/BAX siRNA-mediated antiapoptotic strategy to prolong dendritic cell life with an intracellular strategy to target antigen to lysosomal compartments. International Journal of Cancer, 2007, 120, 1696-1703.	5.1	38
96	DNA vaccine with \hat{l}_{\pm} -galactosylceramide at prime phase enhances anti-tumor immunity after boosting with antigen-expressing dendritic cells. Vaccine, 2010, 28, 7297-7305.	3.8	38
97	HPV and Therapeutic Vaccines: Where are We in 2010?. Current Cancer Therapy Reviews, 2010, 6, 81-103.	0.3	36
98	Tumor-Targeted Delivery of IL-2 by NKG2D Leads to Accumulation of Antigen-Specific CD8+ T Cells in the Tumor Loci and Enhanced Anti-Tumor Effects. PLoS ONE, 2012, 7, e35141.	2.5	36
99	Intratumoral injection of therapeutic HPV vaccinia vaccine following cisplatin enhances HPV-specific antitumor effects. Cancer Immunology, Immunotherapy, 2013, 62, 1175-1185.	4.2	35
100	Characterization of HPV-16 E6 DNA vaccines employing intracellular targeting and intercellular spreading strategies. Journal of Biomedical Science, 2005, 12, 689-700.	7.0	34
101	Intradermal administration of DNA vaccines combining a strategy to bypass antigen processing with a strategy to prolong dendritic cell survival enhances DNA vaccine potency. Vaccine, 2007, 25, 7824-7831.	3.8	34
102	Treatment with proteasome inhibitor bortezomib enhances antigen-specific CD8+ T-cell-mediated antitumor immunity induced by DNA vaccination. Journal of Molecular Medicine, 2008, 86, 899-908.	3.9	34
103	Enhancement of Tumor-Specific T Cell–Mediated Immunity in Dendritic Cell–Based Vaccines by <i>Mycobacterium tuberculosis</i> Heat Shock Protein X. Journal of Immunology, 2014, 193, 1233-1245.	0.8	34
104	Control of Cervicovaginal HPV-16 E7-Expressing Tumors by the Combination of Therapeutic HPV Vaccination and Vascular Disrupting Agents. Human Gene Therapy, 2011, 22, 809-819.	2.7	33
105	Control of HPV-associated tumors by innovative therapeutic HPV DNA vaccine in the absence of CD4+ T cells. Cell and Bioscience, 2014, 4, 11.	4.8	33
106	RNA Interference-Mediated <i>In Vivo</i> Silencing of Fas Ligand as a Strategy for the Enhancement of DNA Vaccine Potency. Human Gene Therapy, 2008, 19, 763-773.	2.7	32
107	Creation of a Merkel cell polyomavirus small T antigen-expressing murine tumor model and a DNA vaccine targeting small T antigen. Cell and Bioscience, 2013, 3, 29.	4.8	32
108	Control of HPV Infection and Related Cancer Through Vaccination. Recent Results in Cancer Research, 2014, 193, 149-171.	1.8	31

#	Article	IF	Citations
109	HPV DNA vaccines. Frontiers in Bioscience - Landmark, 2003, 8, d55-68.	3.0	30
110	Enhancing DNA Vaccine Potency by Combining a Strategy to Prolong Dendritic Cell Life and Intracellular Targeting Strategies with a Strategy to Boost CD4 ⁺ T Cells. Human Gene Therapy, 2007, 18, 1129-1140.	2.7	30
111	Opportunities to Improve the Prevention and Treatment of Cervical Cancer. Current Molecular Medicine, 2007, 7, 490-503.	1.3	29
112	Role of IL-2 secreted by PADRE-specific CD4+ T cells in enhancing E7-specific CD8+ T-cell immune responses. Gene Therapy, 2008, 15, 677-687.	4.5	29
113	A DNA vaccine co-expressing antigen and an anti-apoptotic molecule further enhances the antigen-specific CD8+ T-cell immune response. Journal of Biomedical Science, 2004, 11, 493-499.	7.0	28
114	Characterization of DNA vaccines encoding the domains of calreticulin for their ability to elicit tumor-specific immunity and antiangiogenesis. Vaccine, 2005, 23, 3864-3874.	3.8	28
115	Sindbis virus replicon particles encoding calreticulin linked to a tumor antigen generate long-term tumor-specific immunity. Cancer Gene Therapy, 2006, $13,873-885$.	4.6	27
116	Inhibition of Tumor Growth by NK1.1+ Cells and CD8+ T Cells Activated by IL-15 through Receptor \hat{l}^2 /Common \hat{l}^3 Signaling in <i>trans</i>). Journal of Immunology, 2008, 181, 8237-8247.	0.8	27
117	Annexin A5 Increases Survival in Murine Sepsis Model by Inhibiting HMGB1-Mediated Proinflammation and Coagulation. Molecular Medicine, 2016, 22, 424-436.	4.4	27
118	Cancer Immunotherapy Using Irradiated Tumor Cells Secreting Heat Shock Protein 70. Cancer Research, 2007, 67, 10047-10057.	0.9	26
119	Cluster intradermal DNA vaccination rapidly induces E7-specific CD8+ T-cell immune responses leading to therapeutic antitumor effects. Gene Therapy, 2008, 15, 1156-1166.	4.5	26
120	Femtosecond laser treatment enhances DNA transfection efficiency in vivo. Journal of Biomedical Science, 2009, 16, 36.	7.0	26
121	Efficient delivery of DNA vaccines using human papillomavirus pseudovirions. Gene Therapy, 2010, 17, 1453-1464.	4.5	26
122	Coinfection of HPV-11 and HPV-16 in a Case of Laryngeal Squamous Papillomas With Severe Dysplasia. Laryngoscope, 1997, 107, 942-947.	2.0	25
123	Recombinant DNA vaccines protect against tumors that are resistant to recombinant vaccinia vaccines containing the same gene. Gene Therapy, 2001, 8, 128-138.	4.5	25
124	Repeated DNA vaccinations elicited qualitatively different cytotoxic T lymphocytes and improved protective antitumor effects. Journal of Biomedical Science, 2002, 9, 675-687.	7.0	25
125	Therapeutic human papillomavirus DNA vaccination strategies to control cervical cancer. European Journal of Immunology, 2007, 37, 310-314.	2.9	25
126	Strategy for eliciting antigen-specific CD8+ T cell-mediated immune response against a cryptic CTL epitope of merkel cell polyomavirus large T antigen. Cell and Bioscience, 2012, 2, 36.	4.8	25

#	Article	IF	Citations
127	Xenogeneic Human p53 DNA Vaccination by Electroporation Breaks Immune Tolerance to Control Murine Tumors Expressing Mouse p53. PLoS ONE, 2013, 8, e56912.	2.5	25
128	Vascular disrupting agent DMXAA enhances the antitumor effects generated by therapeutic HPV DNA vaccines. Journal of Biomedical Science, 2011, 18, 21.	7.0	24
129	In vivo microRNA-155 expression influences antigen-specific T cell-mediated immune responses generated by DNA vaccination. Cell and Bioscience, 2011, 1, 3.	4.8	23
130	Histone deacetylase inhibitor AR-42 enhances E7-specific CD8+ T cell-mediated antitumor immunity induced by therapeutic HPV DNA vaccination. Journal of Molecular Medicine, 2013, 91, 1221-1231.	3.9	23
131	Local administration of granulocyte macrophage colony-stimulating factor induces local accumulation of dendritic cells and antigen-specific CD8+ T cells and enhances dendritic cell cross-presentation. Vaccine, 2015, 33, 1549-1555.	3.8	22
132	Intravaginal HPV DNA vaccination with electroporation induces local CD8+ T-cell immune responses and antitumor effects against cervicovaginal tumors. Gene Therapy, 2015, 22, 528-535.	4.5	22
133	Lineage-Specific Alterations in Gynecologic Neoplasms with Choriocarcinomatous Differentiation: Implications for Origin and Therapeutics. Clinical Cancer Research, 2019, 25, 4516-4529.	7.0	22
134	Pancreatic adenocarcinoma upregulated factor serves as adjuvant by activating dendritic cells through stimulation of TLR4. Oncotarget, 2015, 6, 27751-27762.	1.8	22
135	DNA Vaccines Employing Intracellular Targeting Strategies and a Strategy to Prolong Dendritic Cell Life Generate a Higher Number of CD8+ Memory T Cells and Better Long-Term Antitumor Effects Compared with a DNA Prime–Vaccinia Boost Regimen. Human Gene Therapy, 2005, 16, 26-34.	2.7	21
136	Ectopic Expression of X-Linked Lymphocyte-Regulated Protein pM1 Renders Tumor Cells Resistant to Antitumor Immunity. Cancer Research, 2010, 70, 3062-3070.	0.9	21
137	Immune-mediated tumor evolution: Nanog links the emergence of a stem like cancer cell state and immune evasion. Oncolmmunology, 2014, 3, e947871.	4.6	21
138	Nanoparticle-induced intraperitoneal hyperthermia and targeted photoablation in treating ovarian cancer. Oncotarget, 2015, 6, 26861-26875.	1.8	21
139	Generation and characterization of an ascitogenic mesothelin-expressing tumor model. Cancer, 2007, 110, 420-431.	4.1	20
140	Immunotherapeutic strategies employing RNA interference technology for the control of cancers. Journal of Biomedical Science, 2007, 14, 15-29.	7.0	20
141	Enhancement of protein vaccine potency by in vivo electroporation mediated intramuscular injection. Vaccine, 2011, 29, 1082-1089.	3.8	20
142	Direct T Cell Activation via CD40 Ligand Generates High Avidity CD8+ T Cells Capable of Breaking Immunological Tolerance for the Control of Tumors. PLoS ONE, 2014, 9, e93162.	2.5	20
143	Sequential Cisplatin Therapy and Vaccination with HPV16 E6E7L2 Fusion Protein in Saponin Adjuvant GPI-0100 for the Treatment of a Model HPV16+ Cancer. PLoS ONE, 2015, 10, e116389.	2.5	20
144	Vaccination Strategies for the Control and Treatment of HPV Infection and HPV-Associated Cancer. Recent Results in Cancer Research, 2021, 217, 157-195.	1.8	20

#	Article	IF	Citations
145	Antigen-specific immunotherapy for human papillomavirus 16 E7-expressing tumors grown in the liver. Journal of Hepatology, 2000, 33, 91-98.	3.7	19
146	Combination of treatment with death receptor 5-specific antibody with therapeutic HPV DNA vaccination generates enhanced therapeutic anti-tumor effects. Vaccine, 2008, 26, 4314-4319.	3.8	19
147	Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease. Cell and Bioscience, 2016, 6, 16.	4.8	19
148	Current Status of Human Papillomavirus Vaccines. Journal of the Formosan Medical Association, 2010, 109, 481-483.	1.7	17
149	PD-1 blockade synergizes with intratumoral vaccination of a therapeutic HPV protein vaccine and elicits regression of tumor in a preclinical model. Cancer Immunology, Immunotherapy, 2021, 70, 1049-1062.	4.2	17
150	Targeted Coating With Antigenic Peptide Renders Tumor Cells Susceptible to CD8+ T Cell-mediated Killing. Molecular Therapy, 2013, 21, 542-553.	8.2	16
151	Sequential treatment of HPV E6 and E7-expressing TC-1 cells with bortezomib and celecoxib promotes apoptosis through p-p38 MAPK-mediated downregulation of cyclin D1 and CDK2. Oncology Reports, 2014, 31, 2429-2437.	2.6	16
152	Co-administration with DNA encoding papillomavirus capsid proteins enhances the antitumor effects generated by therapeutic HPV DNA vaccination. Cell and Bioscience, 2015, 5, 35.	4.8	16
153	DNA vaccines for cervical cancer. American Journal of Translational Research (discontinued), 2010, 2, 75-87.	0.0	16
154	Buccal injection of synthetic HPV long peptide vaccine induces local and systemic antigen-specific CD8+ T-cell immune responses and antitumor effects without adjuvant. Cell and Bioscience, 2016, 6, 17.	4.8	15
155	Naked RNA vaccine controls tumors with down-regulated MHC class I expression through NK cells and perforin-dependent pathways. European Journal of Immunology, 2004, 34, 1892-1900.	2.9	14
156	Ovarian Cancer Gene Therapy Using HPV-16 Pseudovirion Carrying the HSV-tk Gene. PLoS ONE, 2012, 7, e40983.	2.5	14
157	Cancer Immunotherapy Employing an Innovative Strategy to Enhance CD4+ T Cell Help in the Tumor Microenvironment. PLoS ONE, 2014, 9, e115711.	2.5	14
158	Human papillomavirus vaccines for the prevention and treatment of cervical cancer. Current Opinion in Investigational Drugs, 2004, 5, 1247-61.	2.3	14
159	Innovative DNA Vaccine to Break Immune Tolerance Against Tumor Self-Antigen. Human Gene Therapy, 2013, 24, 181-188.	2.7	13
160	Coinjection of IL2 DNA enhances E7-specific antitumor immunity elicited by intravaginal therapeutic HPV DNA vaccination with electroporation. Gene Therapy, 2017, 24, 408-415.	4.5	13
161	Enhancement of CD4+ T-cell help reverses the doxorubicin-induced suppression of antigen-specific immune responses in vaccinated mice. Gene Therapy, 2008, 15, 1176-1183.	4.5	12
162	Bortezomib enhances antigen-specific cytotoxic T cell responses against immune-resistant cancer cells generated by STAT3-ablated dendritic cells. Pharmacological Research, 2013, 71, 23-33.	7.1	12

#	Article	IF	Citations
163	Intraperitoneal delivery of paclitaxel by poly(ether-anhydride) microspheres effectively suppresses tumor growth in a murine metastatic ovarian cancer model. Drug Delivery and Translational Research, 2014, 4, 203-209.	5.8	12
164	A novel function of API5 (apoptosis inhibitor 5), TLR4-dependent activation of antigen presenting cells. Oncolmmunology, 2018, 7, e1472187.	4.6	12
165	Interleukin 2-Based Fusion Proteins for the Treatment of Cancer. Journal of Immunology Research, 2021, 2021, 1-11.	2.2	12
166	HPV pseudovirions as DNA delivery vehicles. Therapeutic Delivery, 2011, 2, 427-430.	2.2	11
167	Development of a Novel Mouse Model of Spontaneous High-Risk HPVE6/E7–Expressing Carcinoma in the Cervicovaginal Tract. Cancer Research, 2021, 81, 4560-4569.	0.9	11
168	Repeated DNA Vaccinations Elicited Qualitatively Different Cytotoxic T Lymphocytes and Improved Protective Antitumor Effects. Journal of Biomedical Science, 2002, 9, 675-687.	7.0	11
169	Enhancing DNA vaccine potency by co-administration of xenogenic MHC class-I DNA. Gene Therapy, 2010, 17, 531-540.	4.5	10
170	Characterization of HPV18 E6-specific T cell responses and establishment of HPV18 E6-expressing tumor model. Vaccine, 2017, 35, 3850-3858.	3.8	10
171	Integration of Oncogenes via Sleeping Beauty as a Mouse Model of HPV16+ Oral Tumors and Immunologic Control. Cancer Immunology Research, 2018, 6, 305-319.	3.4	10
172	Cervical Cancer: Development of Targeted Therapies Beyond Molecular Pathogenesis. Current Obstetrics and Gynecology Reports, 2014, 3, 18-32.	0.8	9
173	DNA vaccines for cancer. IDrugs: the Investigational Drugs Journal, 2003, 6, 1155-64.	0.7	9
174	Preventive and therapeutic HPV vaccines. Current Opinion in Investigational Drugs, 2007, 8, 1038-50.	2.3	9
175	Enhancing antitumor immunogenicity of HPV16-E7 DNA vaccine by fusing DNA encoding E7-antigenic peptide to DNA encoding capsid protein L1 of Bovine papillomavirus. Cell and Bioscience, 2017, 7, 46.	4.8	8
176	Endoplasmic reticulum stress enhances the antigen-specific T cell immune responses and therapeutic antitumor effects generated by therapeutic HPV vaccines. Journal of Biomedical Science, 2019, 26, 41.	7.0	8
177	Control of Spontaneous HPV16 E6/E7 Expressing Oral Cancer in HLA-A2 (AAD) Transgenic Mice with Therapeutic HPV DNA Vaccine. Journal of Biomedical Science, 2021, 28, 63.	7. O	8
178	Albumin and interferon- \hat{l}^2 fusion protein serves as an effective vaccine adjuvant to enhance antigen-specific CD8+ T cell-mediated antitumor immunity. , 2022, 10, e004342.		8
179	Programmed self-assembly of peptide–major histocompatibility complex for antigen-specific immune modulation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E4032-E4040.	7.1	7
180	DNA vaccines delivered by human papillomavirus pseudovirions as a promising approach for generating antigen-specific CD8+ T cell immunity. Cell and Bioscience, 2011, 1, 26.	4.8	6

#	Article	IF	Citations
181	Control of spontaneous ovarian tumors by CD8+ T cells through NKG2D-targeted delivery of antigenic peptide. Cell and Bioscience, 2013, 3, 48.	4.8	6
182	Epithelial boost enhances antigen expression by vaccinia virus for the generation of potent CD8+ T cell-mediated antitumor immunity following DNA priming vaccination. Virology, 2018, 525, 205-215.	2.4	6
183	Cancer immunotherapy using a potent immunodominant CTL epitope. Vaccine, 2014, 32, 6039-6048.	3.8	5
184	Detection of the human cytomegalovirus 2.0-kb immediate early gene 1 transcripts in permissive and nonpermissive infections by RNA in situ hybridization. Journal of Biomedical Science, 1997, 4, 19-27.	7.0	4
185	Intramuscular vaccination targeting mucosal tumor draining lymph node enhances integrins-mediated CD8+ T cell infiltration to control mucosal tumor growth. Oncolmmunology, 2018, 7, e1463946.	4.6	4
186	Development of a Spontaneous HPV16 E6/E7-Expressing Head and Neck Squamous Cell Carcinoma in HLA-A2 Transgenic Mice. MBio, 2022, 13, e0325221.	4.1	4
187	Antigenâ€specific immunotherapy for murine lung metastatic tumors expressing human papillomavirus type 16 E7 oncoprotein. International Journal of Cancer, 1998, 78, 41-45.	5.1	3
188	Delivery of IL-2 to the T Cell Surface Through Phosphatidylserine Permits Robust Expansion of CD8 T Cells. Frontiers in Immunology, 2021, 12, 755995.	4.8	3
189	Prevention and Treatment of Cervical Cancer by Vaccination. , 2007, , 125-154.		1
190	Localization of epstein-barr virus-encoded small RNA-1 by in situ reverse transcription: Demonstration of cDNA generation in formalin-fixed paraffin-embedded tissue sections. Journal of Biomedical Science, 1995, 2, 249-255.	7.0	0
191	Cancer Therapy: Vaginal Delivery of Paclitaxel via Nanoparticles with Nonâ€Mucoadhesive Surfaces Suppresses Cervical Tumor Growth (Adv. Healthcare Mater. 7/2014). Advanced Healthcare Materials, 2014, 3, 1120-1120.	7.6	0
192	Modification of Dendritic Cells to Enhance Cancer Vaccine Potency., 2009, , 133-157.		0
193	Molecular Pathogenesis, Detection and Clinical Management of Pre-invasive Cervical Lesions., 2011,, 437-466.		0
194	Strategies to Improve DNA Vaccine Potency: HPV-Associated Cervical Cancer as a Model System. , 2012 , , $37-65$.		0
195	CORONAVIRUS VACCINE DEVELOPMENT: FROM SARS AND MERS TO COVID-19 (RUSSIAN TRANSLATION). Juvenis Scientia, 2020, 6, 41-80.	0.2	0
196	Control of Tumors by Antigen-Specific CD8+ T Cells through PDL1-Targeted Delivery of Antigenic Peptide. Journal of Immunology Research, 2022, 2022, 1-8.	2.2	0
197	Erratum for Peng et al., "Development of a Spontaneous HPV16 E6/E7-Expressing Head and Neck Squamous Cell Carcinoma in HLA-A2 Transgenic Mice― MBio, 2022, , e0029622.	4.1	0