Jayakrishna Ambati

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7957838/publications.pdf Version: 2024-02-01

INVARDISHNA AMBATI

#	Article	IF	CITATIONS
1	Compartmentalized citrullination in Muller glial endfeet during retinal degeneration. Proceedings of the United States of America, 2022, 119, .	7.1	11
2	The Learning Curve of Murine Subretinal Injection Among Clinically Trained Ophthalmic Surgeons. Translational Vision Science and Technology, 2022, 11, 13.	2.2	3
3	Subretinal injection in mice to study retinal physiology and disease. Nature Protocols, 2022, 17, 1468-1485.	12.0	1
4	Cytoplasmic synthesis of endogenous <i>Alu</i> complementary DNA via reverse transcription and implications in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	36
5	Nucleoside reverse transcriptase inhibitors and Kamuvudines inhibit amyloid-β induced retinal pigmented epithelium degeneration. Signal Transduction and Targeted Therapy, 2021, 6, 149.	17.1	16
6	Start codon disruption with CRISPR/Cas9 prevents murine Fuchs' endothelial corneal dystrophy. ELife, 2021, 10, .	6.0	15
7	<i>Alu</i> complementary DNA is enriched in atrophic macular degeneration and triggers retinal pigmented epithelium toxicity via cytosolic innate immunity. Science Advances, 2021, 7, eabj3658.	10.3	23
8	A non-canonical, interferon-independent signaling activity of cGAMP triggers DNA damage response signaling. Nature Communications, 2021, 12, 6207.	12.8	30
9	DDX17 is an essential mediator of sterile NLRC4 inflammasome activation by retrotransposon RNAs. Science Immunology, 2021, 6, eabi4493.	11.9	24
10	Macular Hemorrhage Due to Age-Related Macular Degeneration or Retinal Arterial Macroaneurysm: Predictive Factors of Surgical Outcome. Journal of Clinical Medicine, 2021, 10, 5787.	2.4	6
11	A Clinical Metabolite of Azidothymidine Inhibits Experimental Choroidal Neovascularization and Retinal Pigmented Epithelium Degeneration. , 2020, 61, 4.		10
12	Repurposing anti-inflammasome NRTIs for improving insulin sensitivity and reducing type 2 diabetes development. Nature Communications, 2020, 11, 4737.	12.8	31
13	Outcomes of Hydroxychloroquine Usage in United States Veterans Hospitalized with COVID-19. Med, 2020, 1, 114-127.e3.	4.4	411
14	Expert opinion on the management and follow-up of uveitis patients during SARS-CoV-2 outbreak. Expert Review of Clinical Immunology, 2020, 16, 651-657.	3.0	3
15	Chronic Dicer1 deficiency promotes atrophic and neovascular outer retinal pathologies in mice. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2579-2587.	7.1	28
16	NLRP3 Inflammasome Inhibition. JACC Basic To Translational Science, 2020, 5, 1225-1227.	4.1	1
17	L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature, 2019, 566, 73-78.	27.8	701
18	Zidovudine ameliorates pathology in the mouse model of Duchenne muscular dystrophy via P2RX7 purinoceptor antagonism. Acta Neuropathologica Communications, 2018, 6, 27.	5.2	30

JAYAKRISHNA AMBATI

#	Article	IF	CITATIONS
19	cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine, 2018, 24, 50-61.	30.7	205
20	RF/6A Chorioretinal Cells Do Not Display Key Endothelial Phenotypes. , 2018, 59, 5795.		18
21	Pharmacology of Corticosteroids for Diabetic Macular Edema. , 2018, 59, 1.		90
22	The Foundation of the American Society of Retina Specialists Presidents' Young Investigator Award Lecture. Journal of Vitreoretinal Diseases, 2017, 1, 24-26.	0.7	0
23	A Revised Hemodynamic Theory of Age-Related Macular Degeneration. Trends in Molecular Medicine, 2016, 22, 656-670.	6.7	45
24	Human lgG1 antibodies suppress angiogenesis in a target-independent manner. Signal Transduction and Targeted Therapy, 2016, 1, .	17.1	30
25	Intravenous immune globulin suppresses angiogenesis in mice and humans. Signal Transduction and Targeted Therapy, 2016, 1, .	17.1	23
26	Nucleoside Reverse Transcriptase Inhibitors Suppress Laser-Induced Choroidal Neovascularization in Mice. , 2015, 56, 7122.		32
27	Iron Toxicity in the Retina Requires Alu RNA and the NLRP3 Inflammasome. Cell Reports, 2015, 11, 1686-1693.	6.4	78
28	Powerful anti-tumor and anti-angiogenic activity of a new anti-vascular endothelial growth factor receptor 1 peptide in colorectal cancer models. Oncotarget, 2015, 6, 10563-10576.	1.8	24
29	IL-18 is not therapeutic for neovascular age-related macular degeneration. Nature Medicine, 2014, 20, 1372-1375.	30.7	37
30	DICER1/ <i>Alu</i> RNA dysmetabolism induces Caspase-8–mediated cell death in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16082-16087.	7.1	79
31	Nucleoside reverse transcriptase inhibitors possess intrinsic anti-inflammatory activity. Science, 2014, 346, 1000-1003.	12.6	189
32	Immunology of age-related macular degeneration. Nature Reviews Immunology, 2013, 13, 438-451.	22.7	515
33	TLR-Independent and P2X7-Dependent Signaling Mediate <i>Alu</i> RNA-Induced NLRP3 Inflammasome Activation in Geographic Atrophy. , 2013, 54, 7395.		138
34	Short-interfering RNAs Induce Retinal Degeneration via TLR3 and IRF3. Molecular Therapy, 2012, 20, 101-108.	8.2	86
35	ERK1/2 activation is a therapeutic target in age-related macular degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13781-13786.	7.1	98
36	Mechanisms of Age-Related Macular Degeneration. Neuron, 2012, 75, 26-39.	8.1	756

JAYAKRISHNA AMBATI

#	Article	IF	CITATIONS
37	DICER1 Loss and Alu RNA Induce Age-Related Macular Degeneration via the NLRP3 Inflammasome and MyD88. Cell, 2012, 149, 847-859.	28.9	526
38	DICER1 deficit induces Alu RNA toxicity in age-related macular degeneration. Nature, 2011, 471, 325-330.	27.8	573
39	Age-Related Macular Degeneration and the Other Double Helix The Cogan Lecture. , 2011, 52, 2166.		25
40	CCR3 is a target for age-related macular degeneration diagnosis and therapy. Nature, 2009, 460, 225-230.	27.8	236
41	Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature, 2008, 452, 591-597.	27.8	868
42	Reply to "Mouse models of visual deficits― Nature Medicine, 2004, 10, 663-663.	30.7	0
43	An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice. Nature Medicine, 2003, 9, 1390-1397.	30.7	594
44	Age-Related Macular Degeneration: Etiology, Pathogenesis, and Therapeutic Strategies. Survey of Ophthalmology, 2003, 48, 257-293.	4.0	863
45	Macrophage Depletion Inhibits Experimental Choroidal Neovascularization. , 2003, 44, 3578.		449
46	Transscleral drug delivery to the retina and choroid. Progress in Retinal and Eye Research, 2002, 21, 145-151.	15.5	109