
Laurent Torregrosa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7957802/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of the plant sink/source balance on the metabolic content of the Vitis vinifera L. red grape. European Journal of Agronomy, 2021, 122, 126168.	4.1	4
2	The application of ozonated water rearranges the Vitis vinifera L. leaf and berry transcriptomes eliciting defence and antioxidant responses. Scientific Reports, 2021, 11, 8114.	3.3	9
3	The reduction of plant sink/source does not systematically improve the metabolic composition of Vitis vinifera white fruit. Food Chemistry, 2021, 345, 128825.	8.2	11
4	Transcripts switched off at the stop of phloem unloading highlight the energy efficiency of sugar import in the ripening V. vinifera fruit. Horticulture Research, 2021, 8, 193.	6.3	15
5	The shoot system architecture of Vitis vinifera ssp. sativa. Scientia Horticulturae, 2021, 288, 110404.	3.6	7
6	Vitis vinifera L. Diversity for Cations and Acidity Is Suitable for Breeding Fruits Coping With Climate Warming. Frontiers in Plant Science, 2020, 11, 01175.	3.6	14
7	Transcriptome analyses suggest that changes in fungal endophyte lifestyle could be involved in grapevine bud necrosis. Scientific Reports, 2020, 10, 9514.	3.3	14
8	First quantitative assessment of growth, sugar accumulation and malate breakdown in a single ripening berry. Oeno One, 2020, 54, 1077-1092.	1.4	28
9	Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture, 2019, 99, 975-985.	3.5	111
10	The Microvine: A Versatile Plant Model to Boost Grapevine Studies in Physiology and Genetics. , 2019, , .		5
11	The kinetics of grape ripening revisited through berry density sorting. Oeno One, 2019, 53, .	1.4	30
12	The <i>Microvine</i> , a plant model to study the effect of vineâ€shoot extract on the accumulation of glycosylated aroma precursors in grapes. Journal of the Science of Food and Agriculture, 2018, 98, 3031-3040.	3.5	10
13	Vitis vinifera L. Fruit Diversity to Breed Varieties Anticipating Climate Changes. Frontiers in Plant Science, 2018, 9, 455.	3.6	51
14	Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. Oeno One, 2017, 51, 155.	1.4	19
15	Developmental, molecular and genetic studies on grapevine response to temperature open breeding strategies for adaptation to warming. Oeno One, 2017, 51, 155-165.	1.4	32
16	Temperature desynchronizes sugar and organic acid metabolism in ripening grapevine fruits and remodels their transcriptome. BMC Plant Biology, 2016, 16, 164.	3.6	192
17	Identification of stable QTLs for vegetative and reproductive traits in the microvine (Vitis vinifera L.) using the 18ÂK Infinium chip. BMC Plant Biology, 2015, 15, 205.	3.6	65
18	A negative <scp>MYB</scp> regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytologist, 2014, 201, 795-809.	7.3	144

#	Article	IF	CITATIONS
19	Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. BMC Plant Biology, 2014, 14, 108.	3.6	170
20	Genetic dissection of a <scp>TIR</scp> â€ <scp>NB</scp> â€ <scp>LRR</scp> locus from the wild <scp>N</scp> orth <scp>A</scp> merican grapevine species <i><scp>M</scp>uscadinia rotundifolia</i> identifies paralogous genes conferring resistance to major fungal and oomycete pathogens in cultivated grapevine. Plant Journal, 2013, 76, 661-674.	5.7	152
21	<i>In vivo</i> grapevine anthocyanin transport involves vesicleâ€mediated trafficking and the contribution of anthoMATE transporters and GST. Plant Journal, 2011, 67, 960-970.	5.7	222
22	A grapevine Shaker inward K ⁺ channel activated by the calcineurin B-like calcium sensor 1ހ"protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant Journal, 2010, 61, 58-69.	5.7	135
23	Transposon-induced gene activation as a mechanism generating cluster shape somatic variation in grapevine. Plant Journal, 2010, 61, 545-557.	5.7	116
24	The grape microvine - a model system for rapid forward and reverse genetics of grapevines. Plant Journal, 2010, 62, no-no.	5.7	85
25	Grapevine MATE-Type Proteins Act as Vacuolar H+-Dependent Acylated Anthocyanin Transporters Â. Plant Physiology, 2009, 150, 402-415.	4.8	305
26	Ectopic Expression of VvMybPA2 Promotes Proanthocyanidin Biosynthesis in Grapevine and Suggests Additional Targets in the Pathway Â. Plant Physiology, 2009, 149, 1028-1041.	4.8	354
27	Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Plant Molecular Biology, 2009, 69, 633-648.	3.9	202
28	Manipulation of VvAdh to investigate its function in grape berry development. Plant Science, 2008, 174, 149-155.	3.6	36
29	Identification of grapevine MLO gene candidates involved in susceptibility to powdery mildew. Functional Plant Biology, 2008, 35, 1255.	2.1	101
30	Identification of genes associated with flesh morphogenesis during grapevine fruit development. Plant Molecular Biology, 2007, 63, 307-323.	3.9	78
31	Effects of genetic manipulation of alcohol dehydrogenase levels on the response to stress and the synthesis of secondary metabolites in grapevine leaves. Journal of Experimental Botany, 2006, 57, 91-99.	4.8	66
32	Involvement of ethylene signalling in a non-climacteric fruit: new elements regarding the regulation of ADH expression in grapevine. Journal of Experimental Botany, 2004, 55, 2235-2240.	4.8	84
33	A Grapevine Gene Encoding a Guard Cell K+ Channel Displays Developmental Regulation in the Grapevine Berry. Plant Physiology, 2002, 128, 564-577.	4.8	53