
Maimoona A Zariwala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7956176/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Primary Ciliary Dyskinesia. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 459-467.	5.6	701
2	Primary Ciliary Dyskinesia. Recent Advances in Diagnostics, Genetics, and Characterization of Clinical Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 913-922.	5.6	419
3	Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatric Pulmonology, 2016, 51, 115-132.	2.0	297
4	Diagnosis of Primary Ciliary Dyskinesia. An Official American Thoracic Society Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 2018, 197, e24-e39.	5.6	285
5	Genetic Defects in Ciliary Structure and Function. Annual Review of Physiology, 2007, 69, 423-450.	13.1	270
6	Standardizing Nasal Nitric Oxide Measurement as a Test for Primary Ciliary Dyskinesia. Annals of the American Thoracic Society, 2013, 10, 574-581.	3.2	222
7	Clinical Features of Childhood Primary Ciliary Dyskinesia by Genotype and Ultrastructural Phenotype. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 316-324.	5.6	214
8	Laterality Defects Other Than Situs Inversus Totalis in Primary Ciliary Dyskinesia. Chest, 2014, 146, 1176-1186.	0.8	192
9	Mutations in <i>RSPH1</i> Cause Primary Ciliary Dyskinesia with a Unique Clinical and Ciliary Phenotype. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 707-717.	5.6	191
10	Motile ciliopathies. Nature Reviews Disease Primers, 2020, 6, 77.	30.5	191
11	Zebrafish Ciliopathy Screen Plus Human Mutational Analysis Identifies C21orf59 and CCDC65 Defects as Causing Primary Ciliary Dyskinesia. American Journal of Human Genetics, 2013, 93, 672-686.	6.2	184
12	ZMYND10 Is Mutated in Primary Ciliary Dyskinesia and Interacts with LRRC6. American Journal of Human Genetics, 2013, 93, 336-345.	6.2	183
13	Primary Ciliary Dyskinesia. Clinics in Chest Medicine, 2016, 37, 449-461.	2.1	168
14	Mutations of <i>DNAI1</i> in Primary Ciliary Dyskinesia. American Journal of Respiratory and Critical Care Medicine, 2006, 174, 858-866.	5.6	162
15	Clinical Features and Associated Likelihood of Primary Ciliary Dyskinesia in Children and Adolescents. Annals of the American Thoracic Society, 2016, 13, 1305-1313.	3.2	138
16	Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nature Communications, 2014, 5, 5727.	12.8	135
17	A multicenter study of the frequency and distribution of GJB2 and GJB6 mutations in a large North American cohort. Genetics in Medicine, 2007, 9, 413-426.	2.4	134
18	De Novo Mutations in FOXJ1 Result in a Motile Ciliopathy with Hydrocephalus and Randomization of Left/Right Body Asymmetry. American Journal of Human Genetics, 2019, 105, 1030-1039.	6.2	129

MAIMOONA A ZARIWALA

#	Article	IF	CITATIONS
19	Lack of GAS2L2 Causes PCD by Impairing Cilia Orientation and Mucociliary Clearance. American Journal of Human Genetics, 2019, 104, 229-245.	6.2	74
20	The global prevalence and ethnic heterogeneity of primary ciliary dyskinesia gene variants: a genetic database analysis. Lancet Respiratory Medicine,the, 2022, 10, 459-468.	10.7	63
21	Whole-Exome Sequencing and Targeted Copy Number Analysis in Primary Ciliary Dyskinesia. G3: Genes, Genomes, Genetics, 2015, 5, 1775-1781.	1.8	53
22	Primary ciliary dyskinesia (PCD): A genetic disorder of motile cilia. Translational Science of Rare Diseases, 2019, 4, 51-75.	1.5	49
23	The Role of Molecular Genetic Analysis in the Diagnosis of Primary Ciliary Dyskinesia. Annals of the American Thoracic Society, 2014, 11, 351-359.	3.2	47
24	A human ciliopathy reveals essential functions for NEK10 in airway mucociliary clearance. Nature Medicine, 2020, 26, 244-251.	30.7	45
25	Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genetics, 2020, 16, e1008691.	3.5	36
26	Mutation of Growth Arrest Specific 8 Reveals a Role in Motile Cilia Function and Human Disease. PLoS Genetics, 2016, 12, e1006220.	3.5	33
27	The expanding phenotype of <i>OFD1</i> â€related disorders: Hemizygous lossâ€ofâ€function variants in three patients with primary ciliary dyskinesia. Molecular Genetics & Genomic Medicine, 2019, 7, e911.	1.2	31
28	Recurring large deletion in <i>DRC1</i> (<i>CCDC164</i>) identified as causing primary ciliary dyskinesia in two Asian patients. Molecular Genetics & amp; Genomic Medicine, 2019, 7, e838.	1.2	30
29	Identification of genetic variants in CFAP221 as a cause of primary ciliary dyskinesia. Journal of Human Genetics, 2020, 65, 175-180.	2.3	27
30	The prevalence of clinical features associated with primary ciliary dyskinesia in a heterotaxy population: results of a web-based survey. Cardiology in the Young, 2015, 25, 752-759.	0.8	22
31	Autosomal dominant variants in <i>FOXJ1</i> causing primary ciliary dyskinesia in two patients with obstructive hydrocephalus. Molecular Genetics & Genomic Medicine, 2021, 9, e1726.	1.2	22
32	Nasal Nitric Oxide in Primary Immunodeficiency and Primary Ciliary Dyskinesia: Helping to Distinguish Between Clinically Similar Diseases. Journal of Clinical Immunology, 2019, 39, 216-224.	3.8	21
33	Otolaryngology Manifestations of Primary Ciliary Dyskinesia: A Multicenter Study. Otolaryngology - Head and Neck Surgery, 2022, 166, 540-547.	1.9	19
34	Cri du Chat Syndrome and Primary Ciliary Dyskinesia: A Common Genetic Cause on Chromosome 5p. Journal of Pediatrics, 2014, 165, 858-861.	1.8	15
35	Primary Ciliary Dyskinesia in Amish Communities. Journal of Pediatrics, 2010, 156, 1023-1025.	1.8	13
36	Hereditary Mucin Deficiency Caused by Biallelic Loss of Function of <i>MUC5B</i> . American Journal of Respiratory and Critical Care Medicine, 2022, 205, 761-768.	5.6	12

#	Article	IF	CITATIONS
37	Primary ciliary dyskinesia: keep it on your radar. Thorax, 2018, 73, 101-102.	5.6	5
38	The prevalence of the defining features of primary ciliary dyskinesia within a cri du chat syndrome cohort. Pediatric Pulmonology, 2018, 53, 1565-1573.	2.0	4
39	Use caution interpreting nasal nitric oxide: Overlap in primary ciliary dyskinesia and primary immunodeficiency. Pediatric Pulmonology, 2021, 56, 4045-4047.	2.0	4
40	Going beyond the chest Xâ€ray:ÂInvestigating laterality defects in primary ciliary dyskinesia. Pediatric Pulmonology, 2022, 57, 1318-1324.	2.0	3
41	Cytoplasmic "ciliary inclusions―in isolation are not sufficient for the diagnosis of primary ciliary dyskinesia. Pediatric Pulmonology, 2020, 55, 130-135.	2.0	2