
Celia Belen Perales Viejo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guanosine inhibits hepatitis C virus replication and increases indel frequencies, associated with altered intracellular nucleotide pools. PLoS Pathogens, 2022, 18, e1010210.	4.7	3
2	SARS-CoV-2 Point Mutation and Deletion Spectra and Their Association with Different Disease Outcomes. Microbiology Spectrum, 2022, 10, e0022122.	3.0	10
3	Vaccine breakthrough infections with SARS-CoV-2 Alpha mirror mutations in Delta Plus, Iota, and Omicron. Journal of Clinical Investigation, 2022, 132, .	8.2	10
4	In vitro Selection of High Affinity DNA and RNA Aptamers that Detect Hepatitis C Virus Core Protein of Genotypes 1 to 4 and Inhibit Virus Production in Cell Culture. Journal of Molecular Biology, 2022, 434, 167501.	4.2	13
5	SARS-CoV-2 Mutant Spectra at Different Depth Levels Reveal an Overwhelming Abundance of Low Frequency Mutations. Pathogens, 2022, 11, 662.	2.8	16
6	The Time for COVID-19 Vaccination. Journal of Virology, 2021, 95, .	3.4	8
7	Population Disequilibrium as Promoter of Adaptive Explorations in Hepatitis C Virus. Viruses, 2021, 13, 616.	3.3	7
8	Partial restoration of immune response in Hepatitis C patients after viral clearance by direct-acting antiviral therapy. PLoS ONE, 2021, 16, e0254243.	2.5	6
9	Mutation Rates, Mutation Frequencies, and Proofreading-Repair Activities in RNA Virus Genetics. Viruses, 2021, 13, 1882.	3.3	66
10	High SARS-CoV-2 viral load is associated with a worse clinical outcome of COVID-19 disease. Access Microbiology, 2021, 3, 000259.	0.5	13
11	Historical Perspective on the Discovery of the Quasispecies Concept. Annual Review of Virology, 2021, 8, 51-72.	6.7	35
12	Akt Phosphorylation of Hepatitis C Virus NS5B Regulates Polymerase Activity and Hepatitis C Virus Infection. Frontiers in Microbiology, 2021, 12, 754664.	3.5	2
13	Study of Quasispecies Complexity and Liver Damage Progression after Liver Transplantation in Hepatitis C Virus Infected Patients. Genes, 2021, 12, 1731.	2.4	0
14	A Two-Level, Intramutant Spectrum Haplotype Profile of Hepatitis C Virus Revealed by Self-Organized Maps. Microbiology Spectrum, 2021, 9, e0145921.	3.0	8
15	Quasispecies dynamics and clinical significance of hepatitis C virus (HCV) antiviral resistance. International Journal of Antimicrobial Agents, 2020, 56, 105562.	2.5	14
16	Deep-sequencing reveals broad subtype-specific HCV resistance mutations associated with treatment failure. Antiviral Research, 2020, 174, 104694.	4.1	39
17	Amino Acid Substitutions Associated with Treatment Failure for Hepatitis C Virus Infection. Journal of Clinical Microbiology, 2020, 58, .	3.9	15
18	Dissimilar Conservation Pattern in Hepatitis C Virus Mutant Spectra, Consensus Sequences, and Data Banks. Journal of Clinical Medicine. 2020. 9. 3450.	2.4	12

2

#	Article	IF	CITATIONS
19	Broad and Dynamic Diversification of Infectious Hepatitis C Virus in a Cell Culture Environment. Journal of Virology, 2020, 94, .	3.4	20
20	A new implication of quasispecies dynamics: Broad virus diversification in absence of external perturbations. Infection, Genetics and Evolution, 2020, 82, 104278.	2.3	20
21	The archaeology of coding RNA. Annals of the New York Academy of Sciences, 2019, 1447, 119-134.	3.8	10
22	Viral quasispecies. PLoS Genetics, 2019, 15, e1008271.	3.5	220
23	Viral fitness: history and relevance for viral pathogenesis and antiviral interventions. Pathogens and Disease, 2019, 77, .	2.0	36
24	Extracellular vesicles: Vehicles of en bloc viral transmission. Virus Research, 2019, 265, 143-149.	2.2	58
25	The increasing impact of lethal mutagenesis of viruses. Future Medicinal Chemistry, 2019, 11, 1645-1657.	2.3	30
26	Synergistic Lethal Mutagenesis of Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	10
27	Quasispecies and virus. European Biophysics Journal, 2018, 47, 443-457.	2.2	51
28	Pipeline for specific subtype amplification and drug resistance detection in hepatitis C virus. BMC Infectious Diseases, 2018, 18, 446.	2.9	29
29	Baseline hepatitis C virus resistance-associated substitutions present at frequencies lower than 15% may be clinically significant. Infection and Drug Resistance, 2018, Volume 11, 2207-2210.	2.7	26
30	Rare haplotype load as marker for lethal mutagenesis. PLoS ONE, 2018, 13, e0204877.	2.5	8
31	Contribution of a Multifunctional Polymerase Region of Foot-and-Mouth Disease Virus to Lethal Mutagenesis. Journal of Virology, 2018, 92, .	3.4	5
32	Hepatitis C virus early kinetics and resistanceâ€associated substitution dynamics during antiviral therapy with directâ€acting antivirals. Journal of Viral Hepatitis, 2018, 25, 1515-1525.	2.0	10
33	Resistance of high fitness hepatitis C virus to lethal mutagenesis. Virology, 2018, 523, 100-109.	2.4	30
34	New hepatitis C virus genotype 1 subtype naturally harbouring resistance-associated mutations to NS5A inhibitors. Journal of General Virology, 2018, 99, 97-102.	2.9	6
35	Internal Disequilibria and Phenotypic Diversification during Replication of Hepatitis C Virus in a Noncoevolving Cellular Environment. Journal of Virology, 2017, 91, .	3.4	42
36	Molecular and Functional Bases of Selection against a Mutation Bias in an RNA Virus. Genome Biology and Evolution, 2017, 9, 1212-1228.	2.5	13

CELIA BELEN PERALES VIEJO

#	Article	IF	CITATIONS
37	Favipiravir can evoke lethal mutagenesis and extinction of foot-and-mouth disease virus. Virus Research, 2017, 233, 105-112.	2.2	32
38	Deep sequencing in the management of hepatitis virus infections. Virus Research, 2017, 239, 115-125.	2.2	23
39	Quasispecies Dynamics Taught by Natural and Experimental Evolution of Foot-and-mouth Disease Virus. , 2017, , 147-170.		1
40	Quasispecies and Drug Resistance. , 2017, , 123-147.		2
41	Lethal Mutagenesis of Hepatitis C Virus Induced by Favipiravir. PLoS ONE, 2016, 11, e0164691.	2.5	63
42	Hepatitis C Virus RNA-Dependent RNA Polymerase Interacts with the Akt/PKB Kinase and Induces Its Subcellular Relocalization. Antimicrobial Agents and Chemotherapy, 2016, 60, 3540-3550.	3.2	7
43	Viral Quasispecies and Lethal Mutagenesis. European Review, 2016, 24, 39-48.	0.7	1
44	Barrier-Independent, Fitness-Associated Differences in Sofosbuvir Efficacy against Hepatitis C Virus. Antimicrobial Agents and Chemotherapy, 2016, 60, 3786-3793.	3.2	42
45	Viral quasispecies complexity measures. Virology, 2016, 493, 227-237.	2.4	109
46	Distance effects during polyprotein processing in the complementation between defective FMDV RNAs. Journal of General Virology, 2016, 97, 1575-1583.	2.9	1
47	An Efficient Microarray-Based Genotyping Platform for the Identification of Drug-Resistance Mutations in Majority and Minority Subpopulations of HIV-1 Quasispecies. PLoS ONE, 2016, 11, e0166902.	2.5	7
48	New real-time-PCR method to identify single point mutations in hepatitis C virus. World Journal of Gastroenterology, 2016, 22, 9604.	3.3	5
49	Resistance of Hepatitis C Virus to Inhibitors: Complexity and Clinical Implications. Viruses, 2015, 7, 5746-5766.	3.3	44
50	Hepatitis C virus-mediated Aurora B kinase inhibition modulates inflammatory pathway and viral infectivity. Journal of Hepatology, 2015, 63, 312-319.	3.7	17
51	Multifunctionality of a Picornavirus Polymerase Domain: Nuclear Localization Signal and Nucleotide Recognition. Journal of Virology, 2015, 89, 6848-6859.	3.4	22
52	Antiviral Strategies Based on Lethal Mutagenesis and Error Threshold. Current Topics in Microbiology and Immunology, 2015, 392, 323-339.	1.1	41
53	Clonality and intracellular polyploidy in virus evolution and pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8887-8892.	7.1	26
54	High-Resolution Hepatitis C Virus Subtyping Using NS5B Deep Sequencing and Phylogeny, an Alternative to Current Methods. Journal of Clinical Microbiology, 2015, 53, 219-226.	3.9	74

#	Article	IF	CITATIONS
55	Quasispecies and Drug Resistance. , 2014, , 1-22.		0
56	Identification of host and viral factors involved in a dissimilar resolution of a hepatitis C virus infection. Liver International, 2014, 34, 896-906.	3.9	10
57	Molecular basis of interferon resistance in hepatitis C virus. Current Opinion in Virology, 2014, 8, 38-44.	5.4	22
58	Increased Replicative Fitness Can Lead to Decreased Drug Sensitivity of Hepatitis C Virus. Journal of Virology, 2014, 88, 12098-12111.	3.4	74
59	Exploration of sequence space as the basis of viral RNA genome segmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6678-6683.	7.1	29
60	Response of Hepatitis C Virus to Long-Term Passage in the Presence of Alpha Interferon: Multiple Mutations and a Common Phenotype. Journal of Virology, 2013, 87, 7593-7607.	3.4	88
61	Extinction of Hepatitis C Virus by Ribavirin in Hepatoma Cells Involves Lethal Mutagenesis. PLoS ONE, 2013, 8, e71039.	2.5	60
62	Ultra-Deep Pyrosequencing (UDPS) Data Treatment to Study Amplicon HCV Minor Variants. PLoS ONE, 2013, 8, e83361.	2.5	54
63	From Quasispecies Theory to Viral Quasispecies: How Complexity has Permeated Virology. Mathematical Modelling of Natural Phenomena, 2012, 7, 105-122.	2.4	30
64	The impact of quasispecies dynamics on the use of therapeutics. Trends in Microbiology, 2012, 20, 595-603.	7.7	48
65	Viral Quasispecies Evolution. Microbiology and Molecular Biology Reviews, 2012, 76, 159-216.	6.6	811
66	Lethal mutagenesis of viruses. Current Opinion in Virology, 2011, 1, 419-422.	5.4	29
67	Tempo and mode of inhibitor–mutagen antiviral therapies: A multidisciplinary approach. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16008-16013.	7.1	38
68	Influence of Mutagenesis and Viral Load on the Sustained Low-Level Replication of an RNA Virus. Journal of Molecular Biology, 2011, 407, 60-78.	4.2	25
69	Quasispecies as a matter of fact: Viruses and beyond. Virus Research, 2011, 162, 203-215.	2.2	65
70	Viral Genome Segmentation Can Result from a Trade-Off between Genetic Content and Particle Stability. PLoS Genetics, 2011, 7, e1001344.	3.5	95
71	Lethal Mutagenesis of Foot-and-Mouth Disease Virus Involves Shifts in Sequence Space. Journal of Virology, 2011, 85, 12227-12240.	3.4	26
72	A Multi-Step Process of Viral Adaptation to a Mutagenic Nucleoside Analogue by Modulation of Transition Types Leads to Extinction-Escape. PLoS Pathogens, 2010, 6, e1001072.	4.7	83

Celia Belen Perales Viejo

#	Article	IF	CITATIONS
73	Mutant spectra in virus behavior. Future Virology, 2010, 5, 679-698.	1.8	26
74	Deletion Mutants of VPg Reveal New Cytopathology Determinants in a Picornavirus. PLoS ONE, 2010, 5, e10735.	2.5	19
75	Counteracting Quasispecies Adaptability: Extinction of a Ribavirin-Resistant Virus Mutant by an Alternative Mutagenic Treatment. PLoS ONE, 2009, 4, e5554.	2.5	36
76	Potential Benefits of Sequential Inhibitor-Mutagen Treatments of RNA Virus Infections. PLoS Pathogens, 2009, 5, e1000658.	4.7	68
77	Biological Effect of Muller's Ratchet: Distant Capsid Site Can Affect Picornavirus Protein Processing. Journal of Virology, 2009, 83, 6748-6756.	3.4	29
78	Viral Quasispecies: Dynamics, Interactions, and Pathogenesis**Dedicated to Manfred Eigen on the occasion of his 80th birthday, for the insights that his pioneer studies have represented for virology , 2008, , 87-118.		27
79	Molecular Characterization of a Dual Inhibitory and Mutagenic Activity of 5-Fluorouridine Triphosphate on Viral RNA Synthesis. Implications for Lethal Mutagenesis. Journal of Molecular Biology, 2008, 382, 652-666.	4.2	41
80	Persistence of foot-and-mouth disease virus in cell culture revisited: implications for contingency in evolution. Journal of General Virology, 2008, 89, 232-244.	2.9	25
81	Insights into RNA Virus Mutant Spectrum and Lethal Mutagenesis Events: Replicative Interference and Complementation by Multiple Point Mutants. Journal of Molecular Biology, 2007, 369, 985-1000.	4.2	93
82	Viral Fitness Can Influence the Repertoire of Virus Variants Selected by Antibodies. Journal of Molecular Biology, 2006, 362, 44-54.	4.2	13
83	Microarray-based identification of antigenic variants of foot-and-mouth disease virus: a bioinformatics quality assessment. BMC Genomics, 2006, 7, 117.	2.8	16
84	Regulation of HIV-1 env mRNA translation by Rev protein. Biochimica Et Biophysica Acta - Molecular Cell Research, 2005, 1743, 169-175.	4.1	34
85	Monitoring Sequence Space as a Test for the Target of Selection in Viruses. Journal of Molecular Biology, 2005, 345, 451-459.	4.2	28
86	Cleavage of eIF4G by HIV-1 protease: effects on translation. FEBS Letters, 2003, 533, 89-94.	2.8	49
87	Enhancement of DNA, cDNA synthesis and fidelity at high temperatures by a dimeric single-stranded DNA-binding protein. Nucleic Acids Research, 2003, 31, 6473-6480.	14.5	45
88	HIV-1 protease cleaves eukaryotic initiation factor 4G and inhibits cap-dependent translation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 12966-12971.	7.1	115
89	Mutation, Quasispecies, and Lethal Mutagenesis. , 0, , 195-211.		0