
Scott W Hopkins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955600/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Infrared Induced Reactivity on the Surface of Isolated Size-Selected Clusters: Dissociation of N ₂ 0 on Rhodium Clusters. Journal of the American Chemical Society, 2010, 132, 1448-1449.	13.7	72
2	Ion-Molecule Clustering in Differential Mobility Spectrometry: Lessons Learned from Tetraalkylammonium Cations and their Isomers. Journal of the American Society for Mass Spectrometry, 2014, 25, 1583-1591.	2.8	71
3	Studying Gas-Phase Interconversion of Tautomers Using Differential Mobility Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 1277-1284.	2.8	64
4	Janus Face Aspect of All-cis 1,2,3,4,5,6-Hexafluorocyclohexane Dictates Remarkable Anion and Cation Interactions In the Gas Phase. Journal of the American Chemical Society, 2016, 138, 7460-7463.	13.7	62
5	Infrared-Induced Reactivity of N ₂ O on Small Gas-Phase Rhodium Clusters. Journal of Physical Chemistry A, 2011, 115, 2489-2497.	2.5	57
6	A parallelized molecular collision cross section package with optimized accuracy and efficiency. Analyst, The, 2019, 144, 1660-1670.	3.5	57
7	Using differential mobility spectrometry to measure ion solvation: an examination of the roles of solvents and ionic structures in separating quinoline-based drugs. Analyst, The, 2015, 140, 6897-6903.	3.5	51
8	Effects of Coadsorbed Oxygen on the Infrared Driven Decomposition of N ₂ O on Isolated Rh ₅ ⁺ Clusters. Journal of Physical Chemistry Letters, 2011, 2, 3053-3057.	4.6	39
9	Assessing Physicochemical Properties of Drug Molecules via Microsolvation Measurements with Differential Mobility Spectrometry. ACS Central Science, 2017, 3, 101-109.	11.3	37
10	Applying Machine Learning to Vibrational Spectroscopy. Journal of Physical Chemistry A, 2018, 122, 167-171.	2.5	35
11	What stoichiometries determined by mass spectrometry reveal about the ligand binding mode to G-quadruplex nucleic acids. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1353-1361.	2.4	33
12	Interaction of B ₁₂ F ₁₂ ^{2–} with All- <i>cis</i> 1,2,3,4,5,6 Hexafluorocyclohexane in the Gas Phase. Journal of Physical Chemistry Letters, 2017, 8, 109-113.	4.6	33
13	Separating and probing tautomers of protonated nucleobases using differential mobility spectrometry. International Journal of Mass Spectrometry, 2018, 429, 174-181.	1.5	32
14	Characterizing the Tautomers of Protonated Aniline Using Differential Mobility Spectrometry and Mass Spectrometry. Journal of Physical Chemistry A, 2018, 122, 3858-3865.	2.5	31
15	Application of in vivo solid phase microextraction (SPME) in capturing metabolome of apple (Malus) Tj ETQq1 1	0.784314	rgǥŢ /Overloo
16	Proton-Bound 3-Cyanophenylalanine Trimethylamine Clusters: Isomer-Specific Fragmentation Pathways and Evidence of Gas-Phase Zwitterions. Journal of Physical Chemistry A, 2013, 117, 10714-10718.	2.5	30
17	Density Functional Theory Study of Rh _{<i>n</i>} S ^{0,±} and Rh _{<i>n</i>+1} ^{0,±} (<i>n</i> = 1–9). Journal of Physical Chemistry A, 2014, 118, 4278-4287.	2.5	30
18	Determining molecular properties with differential mobility spectrometry and machine learning. Nature Communications, 2018, 9, 5096.	12.8	30

#	Article	IF	CITATIONS
19	Borosilicate Activation of (Difluoroiodo)toluene in the <i>gem</i> â€Difluorination of Phenyldiazoacetate Derivatives. European Journal of Organic Chemistry, 2016, 2016, 4603-4606.	2.4	28
20	Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes. Angewandte Chemie - International Edition, 2019, 58, 16959-16965.	13.8	28
21	A First Principle Model of Differential Ion Mobility: the Effect of Ion-Solvent Clustering. Journal of the American Society for Mass Spectrometry, 2019, 30, 2711-2725.	2.8	25
22	Determining the properties of gas-phase clusters. Molecular Physics, 2015, 113, 3151-3158.	1.7	24
23	Mode-specific fragmentation of amino acid-containing clusters. Physical Chemistry Chemical Physics, 2015, 17, 28548-28555.	2.8	23
24	VUV photodissociation dynamics of diatomic gold, Au2: A velocity map imaging study at 157nm. Chemical Physics Letters, 2009, 483, 10-15.	2.6	21
25	How Hot Are Your Ions in Differential Mobility Spectrometry?. Journal of the American Society for Mass Spectrometry, 2020, 31, 582-593.	2.8	21
26	A velocity map imaging study of gold-rare gas complexes: Au–Ar, Au–Kr, and Au–Xe. Journal of Chemical Physics, 2010, 132, 214303.	3.0	20
27	The electronic spectrum of vanadium monoxide across the visible: New bands and new insight. Journal of Chemical Physics, 2009, 130, 144308.	3.0	19
28	Predicting differential ion mobility behaviour <i>in silico</i> using machine learning. Analyst, The, 2021, 146, 4737-4743.	3.5	19
29	Assessing the impact of anion–π effects on phenylalanine ion structures using IRMPD spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 24223-24234.	2.8	18
30	Assessing collision cross section calculations using MobCal-MPI with a variety of commonly used computational methods. Materials Today Communications, 2021, 27, 102226.	1.9	18
31	RG+ formation following photolysis of NO–RG via the ÖX̃ transition: A velocity map imaging study. Journal of Chemical Physics, 2011, 135, 034308.	3.0	17
32	The structures and properties of proton- and alkali-bound cysteine dimers. Physical Chemistry Chemical Physics, 2016, 18, 4704-4710.	2.8	17
33	<i>N</i> -Oxide S–O chalcogen bonding in conjugated materials. Chemical Science, 2021, 12, 2304-2312.	7.4	17
34	Persistent Intramolecular C–H···X (X = O or S) Hydrogen-Bonding in Benzyl Meldrum's Acid Derivatives. Journal of Physical Chemistry A, 2014, 118, 3795-3803.	2.5	16
35	State-selective photodissociation dynamics of formaldehyde: Near threshold studies of the H+HCO product channel. Journal of Chemical Physics, 2007, 127, 064301.	3.0	15
36	Changes in Tricarbastannatrane Transannular N–Sn Bonding upon Complexation Reveal Lewis Base Donicities. Inorganic Chemistry, 2016, 55, 9579-9585.	4.0	15

#	Article	IF	CITATIONS
37	Understanding Nontraditional Differential Mobility Behavior: A Case Study of the Tricarbastannatrane Cation, N(CH ₂ CH ₂ CH ₂) ₃ Sn ⁺ . Journal of the American Society for Mass Spectrometry, 2020, 31, 796-802.	2.8	15
38	The structures of proton-bound dimers of glycine with phenylalanine and pentafluorophenylalanine. Journal of Molecular Spectroscopy, 2016, 330, 194-199.	1.2	14
39	Intramolecular cation–Ĩ€ interactions in protonated phenylalanine derivatives. Physical Chemistry Chemical Physics, 2017, 19, 729-734.	2.8	13
40	Measuring Electronic Spectra of Differential Mobility-Selected Ions in the Gas Phase. Journal of the American Society for Mass Spectrometry, 2020, 31, 405-410.	2.8	13
41	Communication: Imaging wavefunctions in dissociative photoionization. Journal of Chemical Physics, 2011, 135, 081104.	3.0	12
42	Infrared-Driven Charge Transfer in Transition Metal B ₁₂ F ₁₂ Clusters. Journal of Physical Chemistry A, 2015, 119, 8469-8475.	2.5	12
43	The Charge-State and Structural Stability of Peptides Conferred by Microsolvating Environments in Differential Mobility Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 956-968.	2.8	12
44	A visible spectrum of jet-cooled rhodium monosulfide. Journal of Molecular Spectroscopy, 2005, 234, 211-215.	1.2	11
45	Preferential Ion Microsolvation in Mixed-Modifier Environments Observed Using Differential Mobility Spectrometry. Journal of the American Society for Mass Spectrometry, 2019, 30, 2222-2227.	2.8	11
46	Determining Collision Cross Sections from Differential Ion Mobility Spectrometry. Analytical Chemistry, 2021, 93, 8937-8944.	6.5	11
47	Photodissociation Dynamics of Li(NH3)4: A Velocity Map Imaging Study. Journal of Physical Chemistry Letters, 2011, 2, 257-261.	4.6	10
48	Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes. Angewandte Chemie, 2019, 131, 17115-17121.	2.0	10
49	Separating chiral isomers of amphetamine and methamphetamine using chemical derivatization and differential mobility spectrometry. Analytical Science Advances, 2020, 1, 233-244.	2.8	10
50	Improved First-Principles Model of Differential Mobility Using Higher Order Two-Temperature Theory. Journal of the American Society for Mass Spectrometry, 2022, 33, 535-547.	2.8	10
51	Dynamic Clustering and Ion Microsolvation. Comprehensive Analytical Chemistry, 2019, 83, 83-122.	1.3	9
52	Action spectroscopy of the isolated red Kaede fluorescent protein chromophore. Journal of Chemical Physics, 2021, 155, 124304.	3.0	9
53	Protonationâ€Induced Chirality Drives Separation by Differential Ion Mobility Spectrometry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	9
54	Quantitative (Ï, N, Ka) Product State Distributions near the Triplet Threshold for the Reaction H2CO → H + HCO Measured by Rydberg Tagging and Laser-Induced Fluorescence. Journal of Physical Chemistry A, 2008, 112, 9283-9289.	2.5	8

#	Article	IF	CITATIONS
55	Xe+ formation following photolysis of Au–Xe: A velocity map imaging study. Journal of Chemical Physics, 2011, 134, 094311.	3.0	8
56	Identifying Fenton-Reacted Trimethoprim Transformation Products Using Differential Mobility Spectrometry. Analytical Chemistry, 2018, 90, 5352-5357.	6.5	8
57	UVPD spectroscopy of differential mobility-selected prototropic isomers of protonated adenine. Physical Chemistry Chemical Physics, 2021, 23, 19892-19900.	2.8	8
58	Electronic spectroscopy of differential mobility-selected prototropic isomers of protonated <i>para</i> -aminobenzoic acid. Physical Chemistry Chemical Physics, 2021, 23, 20607-20614.	2.8	8
59	Unravelling the factors that drive separation in differential mobility spectrometry: A case study of regioisomeric phosphatidylcholine adducts. International Journal of Mass Spectrometry, 2019, 444, 116182.	1.5	7
60	Dissociation dynamics of the low-lying Rydberg states of Xe ₂ : a velocity map imaging study. Molecular Physics, 2012, 110, 2465-2475.	1.7	5
61	Infrared-Driven Charge-Transfer in Transition Metal-Containing B ₁₂ X ₁₂ ^{2–} (X = H, F) Clusters. Journal of Physical Chemistry A, 2018, 122, 7051-7061.	2.5	5
62	Ligand specificity and affinity in the sulforhodamine B binding RNA aptamer. Biochemical and Biophysical Research Communications, 2020, 529, 666-671.	2.1	5
63	UVPD Spectroscopy of Differential Mobility-Selected Prototropic Isomers of Rivaroxaban. Journal of Physical Chemistry A, 2021, 125, 8187-8195.	2.5	5
64	Rapid separation of cannabinoid isomer sets using differential mobility spectrometry and mass spectrometry. Analyst, The, 2022, 147, 2198-2206.	3.5	5
65	The structures and properties of anionic tryptophan complexes. Physical Chemistry Chemical Physics, 2018, 20, 26532-26541.	2.8	4
66	Carboxylic acids as anchoring components on aluminum oxide for the alignment relay technique of single-walled carbon nanotubes. New Journal of Chemistry, 2021, 45, 5340-5349.	2.8	4
67	Mode-Selective Laser Control of Palladium Catalyst Decomposition. Journal of Physical Chemistry Letters, 2018, 9, 157-162.	4.6	3
68	Trapping a Photoelectron behind a Repulsive Coulomb Barrier in Solution. Journal of Physical Chemistry Letters, 2019, 10, 5742-5747.	4.6	2
69	The structure of proton-bound Triethylammonia (X = F, Cl) Clusters. Molecular Physics, 2019, 117, 2972-2979.	1.7	2
70	"Thermometer―Ions Can Fragment Through an Unexpected Intramolecular Elimination: These Are Not the Fragments You Are Looking For. Journal of Physical Chemistry Letters, 2021, 12, 5994-5999.	4.6	2
71	Frontispiece: Protonationâ€Induced Chirality Drives Separation by Differential Ion Mobility Spectrometry. Angewandte Chemie - International Edition, 2022, 61, .	13.8	2
72	<i>New Views</i> Author profile. Molecular Physics, 2015, 113, 3159-3160.	1.7	0

#	Article	IF	CITATIONS
73	Front Cover: Borosilicate Activation of (Difluoroiodo)toluene in thegem-Difluorination of Phenyldiazoacetate Derivatives (Eur. J. Org. Chem. 27/2016). European Journal of Organic Chemistry, 2016, 2016, 4586-4586.	2.4	0
74	Innentitelbild: Blue LED Irradiation of Iodonium Ylides Gives Diradical Intermediates for Efficient Metalâ€free Cyclopropanation with Alkenes (Angew. Chem. 47/2019). Angewandte Chemie, 2019, 131, 16854-16854.	2.0	0
75	Protonationâ€Induced Chirality Drives Separation by Differential Ion Mobility Spectrometry. Angewandte Chemie, 0, , .	2.0	0
76	Frontispiz: Protonationâ€Induced Chirality Drives Separation by Differential Ion Mobility Spectrometry. Angewandte Chemie, 2022, 134, .	2.0	0