
## Robert J Allen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7955135/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Evidence for climate change in the satellite cloud record. Nature, 2016, 536, 72-75.                                                                                                                    | 27.8 | 264       |
| 2  | Recent Northern Hemisphere tropical expansion primarily driven by black carbon and tropospheric ozone. Nature, 2012, 485, 350-354.                                                                      | 27.8 | 216       |
| 3  | Influence of anthropogenic aerosols and the Pacific Decadal Oscillation on tropical belt width.<br>Nature Geoscience, 2014, 7, 270-274.                                                                 | 12.9 | 144       |
| 4  | Trends in Twentieth-Century Temperature Extremes across the United States. Journal of Climate, 2002, 15, 3188-3205.                                                                                     | 3.2  | 138       |
| 5  | Robust Tropospheric Warming Revealed by Iteratively Homogenized Radiosonde Data. Journal of Climate, 2008, 21, 5336-5352.                                                                               | 3.2  | 108       |
| 6  | Warming maximum in the tropical upper troposphere deduced from thermal winds. Nature Geoscience, 2008, 1, 399-403.                                                                                      | 12.9 | 105       |
| 7  | Historical and future changes in air pollutants from CMIP6 models. Atmospheric Chemistry and Physics, 2020, 20, 14547-14579.                                                                            | 4.9  | 105       |
| 8  | Recent Tropical Expansion: Natural Variability or Forced Response?. Journal of Climate, 2019, 32,<br>1551-1571.                                                                                         | 3.2  | 87        |
| 9  | Interhemispheric Aerosol Radiative Forcing and Tropical Precipitation Shifts during the Late<br>Twentieth Century. Journal of Climate, 2015, 28, 8219-8246.                                             | 3.2  | 81        |
| 10 | An increase in aerosol burden and radiative effects in a warmer world. Nature Climate Change, 2016, 6,<br>269-274.                                                                                      | 18.8 | 79        |
| 11 | The impact of natural versus anthropogenic aerosols on atmospheric circulation in the Community<br>Atmosphere Model. Climate Dynamics, 2011, 36, 1959-1978.                                             | 3.8  | 77        |
| 12 | Forcing of the Arctic Oscillation by Eurasian Snow Cover. Journal of Climate, 2011, 24, 6528-6539.                                                                                                      | 3.2  | 68        |
| 13 | The Role of Natural Climate Variability in Recent Tropical Expansion. Journal of Climate, 2017, 30,<br>6329-6350.                                                                                       | 3.2  | 66        |
| 14 | El Niño-like teleconnection increases California precipitation in response to warming. Nature<br>Communications, 2017, 8, 16055.                                                                        | 12.8 | 48        |
| 15 | Areal Reduction Factors for Two Eastern United States Regions with High Rain-Gauge Density. Journal of Hydrologic Engineering - ASCE, 2005, 10, 327-335.                                                | 1.9  | 47        |
| 16 | The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4808-4835. | 3.3  | 47        |
| 17 | Considerations for the use of radar-derived precipitation estimates in determining return intervals for extreme areal precipitation amounts. Journal of Hydrology, 2005, 315, 203-219.                  | 5.4  | 46        |
| 18 | The Modification of Sea Surface Temperature Anomaly Linear Damping Time Scales by Stratocumulus<br>Clouds. Journal of Climate, 2013, 26, 3619-3630.                                                     | 3.2  | 46        |

**ROBERT J ALLEN** 

| #  | Article                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Future aerosol reductions and widening of the northern tropical belt. Journal of Geophysical<br>Research D: Atmospheres, 2016, 121, 6765-6786.                                                       | 3.3  | 43        |
| 20 | Natural variations of tropical width and recent trends. Geophysical Research Letters, 2017, 44, 3825-3832.                                                                                           | 4.0  | 43        |
| 21 | A 21st century northward tropical precipitation shift caused by future anthropogenic aerosol reductions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 9087-9102.                       | 3.3  | 36        |
| 22 | Estimating missing daily temperature extremes using an optimized regression approach. International<br>Journal of Climatology, 2001, 21, 1305-1319.                                                  | 3.5  | 35        |
| 23 | Observationally constrained aerosol–cloud semi-direct effects. Npj Climate and Atmospheric Science, 2019, 2, .                                                                                       | 6.8  | 35        |
| 24 | Dependence of regional ocean heat uptake on anthropogenic warming scenarios. Science Advances,<br>2020, 6, .                                                                                         | 10.3 | 34        |
| 25 | Tropical Widening: From Global Variations to Regional Impacts. Bulletin of the American<br>Meteorological Society, 2020, 101, E897-E904.                                                             | 3.3  | 31        |
| 26 | Climate and air quality impacts due to mitigation of non-methane near-term climate forcers.<br>Atmospheric Chemistry and Physics, 2020, 20, 9641-9663.                                               | 4.9  | 30        |
| 27 | Impact of Saharan dust on North Atlantic marine stratocumulus clouds: importance of the semidirect effect. Atmospheric Chemistry and Physics, 2017, 17, 6305-6322.                                   | 4.9  | 29        |
| 28 | Anthropogenic aerosol forcing of the Atlantic meridional overturning circulation and the associated mechanisms in CMIP6 models. Atmospheric Chemistry and Physics, 2021, 21, 5821-5846.              | 4.9  | 25        |
| 29 | 21st century California drought risk linked to model fidelity of the El Niño teleconnection. Npj<br>Climate and Atmospheric Science, 2018, 1, .                                                      | 6.8  | 19        |
| 30 | Enhanced land–sea warming contrast elevates aerosol pollution in a warmer world. Nature Climate<br>Change, 2019, 9, 300-305.                                                                         | 18.8 | 19        |
| 31 | A Method to Adjust Long-Term Temperature Extreme Series for Nonclimatic Inhomogeneities. Journal of Climate, 2000, 13, 3680-3695.                                                                    | 3.2  | 18        |
| 32 | Fast responses on pre-industrial climate from present-day aerosols in a CMIP6 multi-model study.<br>Atmospheric Chemistry and Physics, 2020, 20, 8381-8404.                                          | 4.9  | 18        |
| 33 | Utility of Radiosonde Wind Data in Representing Climatological Variations of Tropospheric<br>Temperature and Baroclinicity in the Western Tropical Pacific. Journal of Climate, 2007, 20, 5229-5243. | 3.2  | 17        |
| 34 | Strengthening of the Walker Circulation in recent decades and the role of natural sea surface temperature variability. Environmental Research Communications, 2019, 1, 021003.                       | 2.3  | 14        |
| 35 | Significant climate benefits from near-term climate forcer mitigation in spite of aerosol reductions.<br>Environmental Research Letters, 0, , .                                                      | 5.2  | 14        |
| 36 | Understanding influences of convective transport and removal processes on aerosol vertical distribution. Geophysical Research Letters, 2015, 42, 10,438.                                             | 4.0  | 11        |

**ROBERT J ALLEN** 

3

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Regional Features of Long-Term Exposure to PM2.5 Air Quality over Asia under SSP Scenarios Based on<br>CMIP6 Models. International Journal of Environmental Research and Public Health, 2021, 18, 6817. | 2.6 | 10        |
| 38 | A Homogenized Historical Temperature Extreme Dataset for the United States. Journal of Atmospheric and Oceanic Technology, 2002, 19, 1267-1284.                                                         | 1.3 | 8         |
| 39 | An Implicit Air Quality Bias Due to the State of Pristine Aerosol. Earth's Future, 2021, 9, e2021EF001979.                                                                                              | 6.3 | 8         |
| 40 | Importance of the El Niño Teleconnection to the 21st Century California Wintertime Extreme<br>Precipitation Increase. Geophysical Research Letters, 2018, 45, 10,648.                                   | 4.0 | 6         |
| 41 | A La Niña‣ike Climate Response to South African Biomass Burning Aerosol in CESM Simulations.<br>Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031832.                               | 3.3 | 6         |
| 42 | Tropical Belt Width Proportionately More Sensitive to Aerosols Than Greenhouse Gases. Geophysical<br>Research Letters, 2020, 47, e2019GL086425.                                                         | 4.0 | 6         |
| 43 | Air quality improvements are projected to weaken the Atlantic meridional overturning circulation through radiative forcing effects. Communications Earth & Environment, 2022, 3, .                      | 6.8 | 5         |
| 44 | The Semidirect Effect of Combined Dust and Sea Salt Aerosols in a Multimodel Analysis. Geophysical<br>Research Letters, 2019, 46, 10512-10521.                                                          | 4.0 | 4         |
| 45 | Assessing California Wintertime Precipitation Responses to Various Climate Drivers. Journal of<br>Geophysical Research D: Atmospheres, 2020, 125, e2019JD031736.                                        | 3.3 | 4         |
|    |                                                                                                                                                                                                         |     |           |

Anthropogenic aerosol impacts on Pacific Coast precipitation in CMIP6 models. , 2022, 1, 015005.