Yusuf Kelestemur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954794/publications.pdf

Version: 2024-02-01

50 2,080 26
papers citations h-index

51 51 51 2030 all docs docs citations times ranked citing authors

41

g-index

#	Article	IF	Citations
1	Amplified Spontaneous Emission and Lasing in Colloidal Nanoplatelets. ACS Nano, 2014, 8, 6599-6605.	7.3	288
2	Lateral Size-Dependent Spontaneous and Stimulated Emission Properties in Colloidal CdSe Nanoplatelets. ACS Nano, 2015, 9, 5041-5050.	7. 3	154
3	Experimental Determination of the Absorption Cross-Section and Molar Extinction Coefficient of Colloidal CdSe Nanoplatelets. Journal of Physical Chemistry C, 2015, 119, 26768-26775.	1.5	146
4	Stacking in Colloidal Nanoplatelets: Tuning Excitonic Properties. ACS Nano, 2014, 8, 12524-12533.	7. 3	134
5	Nearâ€Unity Emitting Copperâ€Doped Colloidal Semiconductor Quantum Wells for Luminescent Solar Concentrators. Advanced Materials, 2017, 29, 1700821.	11.1	133
6	Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser. Advanced Materials, 2015, 27, 2741-2746.	11.1	92
7	Plateletâ€inâ€Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets. Advanced Functional Materials, 2016, 26, 3570-3579.	7.8	72
8	Type-II Colloidal Quantum Wells: CdSe/CdTe Core/Crown Heteronanoplatelets. Journal of Physical Chemistry C, 2015, 119, 2177-2185.	1.5	70
9	Tunable White-Light-Emitting Mn-Doped ZnSe Nanocrystals. ACS Applied Materials & amp; Interfaces, 2014, 6, 3654-3660.	4.0	67
10	Highly Stable, Nearâ€Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Heteroâ€Nanoplatelets Enabled by ZnSâ€Shell Hotâ€Injection Growth. Small, 2019, 15, e1804854.	5.2	67
11	Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence. ACS Nano, 2019, 13, 13899-13909.	7.3	64
12	Nonradiative energy transfer in colloidal CdSe nanoplatelet films. Nanoscale, 2015, 7, 2545-2551.	2.8	58
13	Orientation-Controlled Nonradiative Energy Transfer to Colloidal Nanoplatelets: Engineering Dipole Orientation Factor. Nano Letters, 2019, 19, 4297-4305.	4.5	53
14	Continuously Tunable Emission in Inverted Type″ CdS/CdSe Core/Crown Semiconductor Nanoplatelets. Advanced Functional Materials, 2015, 25, 4282-4289.	7.8	52
15	Alloyed Heterostructures of CdSe _{<i>x</i>} S _{1â€"<i>x</i>} Nanoplatelets with Highly Tunable Optical Gain Performance. Chemistry of Materials, 2017, 29, 4857-4865.	3.2	51
16	Understanding the Journey of Dopant Copper Ions in Atomically Flat Colloidal Nanocrystals of CdSe Nanoplatelets Using Partial Cation Exchange Reactions. Chemistry of Materials, 2018, 30, 3265-3275.	3.2	51
17	CdSe/CdSe _{1â€"<i>x</i>} Te _{<i>x</i>} Core/Crown Heteronanoplatelets: Tuning the Excitonic Properties without Changing the Thickness. Journal of Physical Chemistry C, 2017, 121, 4650-4658.	1.5	45
18	Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films. Journal of Physical Chemistry Letters, 2014, 5, 2214-2218.	2.1	41

#	Article	IF	Citations
19	Quantum Dot/Light-Emitting Electrochemical Cell Hybrid Device and Mechanism of Its Operation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24692-24698.	4.0	41
20	Attractive versus Repulsive Excitonic Interactions of Colloidal Quantum Dots Control Blue- to Red-Shifting (and Non-shifting) Amplified Spontaneous Emission. Journal of Physical Chemistry Letters, 2013, 4, 4146-4152.	2.1	38
21	High-Efficiency Optical Gain in Type-II Semiconductor Nanocrystals of Alloyed Colloidal Quantum Wells. Journal of Physical Chemistry Letters, 2017, 8, 5317-5324.	2.1	37
22	Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain. Chemistry of Materials, 2019, 31, 1818-1826.	3.2	37
23	Fast Neutron Imaging with Semiconductor Nanocrystal Scintillators. ACS Nano, 2020, 14, 14686-14697.	7.3	34
24	Manganese Doped Fluorescent Paramagnetic Nanocrystals for Dualâ€Modal Imaging. Small, 2014, 10, 4961-4966.	5.2	31
25	Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton–exciton interaction. Nanoscale, 2014, 6, 8509-8514.	2.8	30
26	Plasmon-enhanced fluorescence in gold nanorod-quantum dot coupled systems. Nanotechnology, 2020, 31, 105201.	1.3	29
27	Temperature-Dependent Emission Kinetics of Colloidal Semiconductor Nanoplatelets Strongly Modified by Stacking. Journal of Physical Chemistry Letters, 2016, 7, 548-554.	2.1	28
28	Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures. Journal of Physical Chemistry C, 2013, 117, 25298-25304.	1.5	19
29	Observation of Biexcitons in Nanocrystal Solids in the Presence of Photocharging. ACS Nano, 2013, 7, 4799-4809.	7.3	18
30	Stable and efficient colour enrichment powders of nonpolar nanocrystals in LiCl. Nanoscale, 2015, 7, 17611-17616.	2.8	17
31	Light-Induced Paramagnetism in Colloidal Ag+-Doped CdSe Nanoplatelets. Journal of Physical Chemistry Letters, 2021, 12, 2892-2899.	2.1	17
32	Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing. Advanced Functional Materials, 2016, 26, 2891-2899.	7.8	16
33	Energy-saving quality road lighting with colloidal quantum dot nanophosphors. Nanophotonics, 2014, 3, 373-381.	2.9	14
34	Colloidal Nanoplatelet/Conducting Polymer Hybrids: Excitonic and Material Properties. Journal of Physical Chemistry C, 2016, 120, 3573-3582.	1.5	11
35	Excitonic improvement of colloidal nanocrystals in salt powder matrix for quality lighting and color enrichment. Optics Express, 2016, 24, A74.	1.7	8
36	Flexible and fragmentable tandem photosensitive nanocrystal skins. Nanoscale, 2016, 8, 4495-4503.	2.8	5

3

#	Article	IF	CITATIONS
37	Low-threshold optical gain and lasing of colloidal nanoplatelets. , 2014, , .		2
38	Implementation of graphene multilayer electrodes in quantum dot light-emitting devices. Applied Physics A: Materials Science and Processing, 2015, 120, 1197-1203.	1.1	2
39	Upconversion Lasers: Stable and Lowâ€Threshold Optical Gain in CdSe/CdS Quantum Dots: An Allâ€Colloidal Frequency Upâ€Converted Laser (Adv. Mater. 17/2015). Advanced Materials, 2015, 27, 2678-2678.	11.1	2
40	Colloidal Nanoplatelets: Plateletâ€inâ€Box Colloidal Quantum Wells: CdSe/CdS@CdS Core/Crown@Shell Heteronanoplatelets (Adv. Funct. Mater. 21/2016). Advanced Functional Materials, 2016, 26, 3554-3554.	7.8	2
41	Noncontact Temperature Probing: Highly Efficient Nonradiative Energy Transfer from Colloidal Semiconductor Quantum Dots to Wells for Sensitive Noncontact Temperature Probing (Adv. Funct.) Tj ETQq1 1	0 .7 84314	rgBT Overlo
42	Fluorescent Heterodoped Nanotetrapods as Synergistically Enhancing Positive and Negative Magnetic Resonance Imaging Contrast Agents. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12352-12359.	4.0	2
43	Observation of biexcitons in the presence of trions generated via sequential absorption of multiple photons in colloidal quantum dot solids. , 2012, , .		0
44	Blue- and red-shifting amplified spontaneous emission of CdSe/CdS core/shell colloidal quantum dots. , 2013, , .		0
45	Type-tuning of quasi-type-II CdSe/CdS seeded core/shell nanorods: type-I vs. type-II. , 2013, , .		O
46	Silica Synthesis and Coating of Quantum Dots in Droplet Based Microreactors. , 2015, , .		0
47	High-efficiency high-quality street lighting with colloidal quantum dot nanophosphors. , 2015, , .		0
48	Silica Nanoparticle Formation by Using Droplet-Based Microreactor. , 2017, , .		0
49	Heterodoped Nanoparticles as Dual-Mode Contrast Agent for MRI. , 2017, , .		O
50	Exciton Dynamics of Colloidal Semiconductor Quantum Well Stacks. NATO Science for Peace and Security Series B: Physics and Biophysics, 2018, , 365-367.	0.2	0