G Vignir Helgason

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7954727/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mitochondrial metabolism as a potential therapeutic target in myeloid leukaemia. Leukemia, 2022, 36, 1-12.	7.2	54
2	Autophagy in hematopoiesis and leukemogenesis. , 2022, , 125-141.		1
3	Targeting ULK1 in cancer stem cells: insight from chronic myeloid leukemia. Autophagy, 2022, 18, 1734-1736.	9.1	3
4	Folate metabolism: a re-emerging therapeutic target in haematological cancers. Leukemia, 2021, 35, 1539-1551.	7.2	38
5	ULK1 inhibition promotes oxidative stress–induced differentiation and sensitizes leukemic stem cells to targeted therapy. Science Translational Medicine, 2021, 13, eabd5016.	12.4	26
6	BCR signaling contributes to autophagy regulation in chronic lymphocytic leukemia. Leukemia, 2020, 34, 640-644.	7.2	12
7	The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nature Reviews Cancer, 2020, 20, 158-173.	28.4	181
8	Utilizing Stimulated Raman Scattering Microscopy To Study Intracellular Distribution of Label-Free Ponatinib in Live Cells. Journal of Medicinal Chemistry, 2020, 63, 2028-2034.	6.4	50
9	Autophagy and mitochondrial metabolism: insights into their role and therapeutic potential in chronic myeloid leukaemia. FEBS Journal, 2019, 286, 1271-1283.	4.7	11
10	Targeting quiescent leukemic stem cells using second generation autophagy inhibitors. Leukemia, 2019, 33, 981-994.	7.2	99
11	hsa-mir183/EGR1–mediated regulation of E2F1 is required for CML stem/progenitor cell survival. Blood, 2018, 131, 1532-1544.	1.4	40
12	Auto-Commentary on: "Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells― Molecular and Cellular Oncology, 2018, 5, e1403532.	0.7	2
13	Targeting BCR-ABL-Independent TKI Resistance in Chronic Myeloid Leukemia by mTOR and Autophagy Inhibition. Journal of the National Cancer Institute, 2018, 110, 467-478.	6.3	76
14	The Ins and Outs of Autophagy and Metabolism in Hematopoietic and Leukemic Stem Cells: Food for Thought. Frontiers in Cell and Developmental Biology, 2018, 6, 120.	3.7	17
15	Targeting mitochondrial oxidative phosphorylation eradicates therapy-resistant chronic myeloid leukemia stem cells. Nature Medicine, 2017, 23, 1234-1240.	30.7	382
16	Axl Blockade by BGB324 Inhibits BCR-ABL Tyrosine Kinase Inhibitor–Sensitive and -Resistant Chronic Myeloid Leukemia. Clinical Cancer Research, 2017, 23, 2289-2300.	7.0	38
17	ATG7 regulates energy metabolism, differentiation and survival of Philadelphia-chromosome-positive cells. Autophagy, 2016, 12, 936-948.	9.1	84
18	Therapy Resistant CML Stem Cells Are Dependent on Mitochondrial Oxidative Metabolism for Their Survival. Blood, 2016, 128, 932-932.	1.4	2

G VIGNIR HELGASON

#	Article	IF	CITATIONS
19	Do we need more drugs for chronic myeloid leukemia?. Immunological Reviews, 2015, 263, 106-123.	6.0	37
20	The Antiproliferative Activity of Kinase Inhibitors in Chronic Myeloid Leukemia Cells Is Mediated by FOXO Transcription Factors. Stem Cells, 2014, 32, 2324-2337.	3.2	83
21	Autophagy in blood cancers: biological role and therapeutic implications. Haematologica, 2013, 98, 1335-1343.	3.5	54
22	Role of autophagy in cancer prevention, development and therapy. Essays in Biochemistry, 2013, 55, 133-151.	4.7	33
23	Autophagy in Chronic Myeloid Leukaemia: Stem Cell Survival and Implication in Therapy. Current Cancer Drug Targets, 2013, 13, 724-734.	1.6	32
24	Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells. Journal of Clinical Investigation, 2013, 123, 3634-3634.	8.2	2
25	Mechanisms and novel approaches in overriding tyrosine kinase inhibitor resistance in chronic myeloid leukemia. Expert Review of Anticancer Therapy, 2012, 12, 381-392.	2.4	15
26	Chronic myeloid leukemia stem cells are not dependent on Bcr-Abl kinase activity for their survival. Blood, 2012, 119, 1501-1510.	1.4	359
27	Kill one bird with two stones: potential efficacy of BCR-ABL and autophagy inhibition in CML. Blood, 2011, 118, 2035-2043.	1.4	106
28	Targeting Chronic Myeloid Leukemia Stem Cells. Current Hematologic Malignancy Reports, 2010, 5, 81-87.	2.3	30
29	Oncogene-Induced Sensitization to Chemotherapy-Induced Death Requires Induction as well as Deregulation of E2F1. Cancer Research, 2010, 70, 4074-4080.	0.9	10
30	Targeting autophagy potentiates tyrosine kinase inhibitor–induced cell death in Philadelphia chromosome–positive cells, including primary CML stem cells. Journal of Clinical Investigation, 2009, 119, 1109-1123.	8.2	503
31	Combined BCR-ABL inhibition with lentiviral-delivered shRNA and dasatinib augments induction of apoptosis in Philadelphia-positive cells. Experimental Hematology, 2009, 37, 206-214.	0.4	2