
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7953262/publications.pdf Version: 2024-02-01

M FILFEN DOLAN

#	Article	IF	CITATIONS
1	Pharmacogenomics of <scp>cisplatinâ€induced</scp> neurotoxicities: Hearing loss, tinnitus, and peripheral sensory neuropathy. Cancer Medicine, 2022, 11, 2801-2816.	2.8	14
2	Genetically regulated expression underlies cellular sensitivity to chemotherapy in diverse populations. Human Molecular Genetics, 2021, 30, 305-317.	2.9	8
3	Identification of small molecules that mitigate vincristineâ€induced neurotoxicity while sensitizing leukemia cells to vincristine. Clinical and Translational Science, 2021, 14, 1490-1504.	3.1	12
4	Pharmacogenomics of cisplatin-induced neurotoxicities: Hearing loss, tinnitus and peripheral sensory neuropathy Journal of Clinical Oncology, 2021, 39, 12004-12004.	1.6	0
5	Hearing loss after cisplatin-based chemotherapy: Patient-reported outcomes versus audiometric assessments Journal of Clinical Oncology, 2021, 39, 5016-5016.	1.6	1
6	Integration of a polygenic risk score of kidney function with cumulative cisplatin dose and time variables for the prediction of serum platinum levels Journal of Clinical Oncology, 2021, 39, 12063-12063.	1.6	1
7	Clinical and genetic risk factors for radiationâ€associated ototoxicity: A report from the Childhood Cancer Survivor Study and the St. Jude Lifetime Cohort. Cancer, 2021, 127, 4091-4102.	4.1	6
8	Adapting Pathway Programs to the Virtual World: Insights from the Chicago EYES on Cancer Response to COVID-19-Related Disruptions to Training. Journal of STEM Outreach, 2021, 4, .	0.5	1
9	Clinical evaluation of germline polymorphisms associated with capecitabine toxicity in breast cancer: TBCRC-015. Breast Cancer Research and Treatment, 2020, 181, 623-633.	2.5	6
10	Genomic Variants of Cytarabine Sensitivity Associated with Treatment-Related Mortality in Pediatric AML: A Report from the Children's Oncology Group. Clinical Cancer Research, 2020, 26, 2891-2897.	7.0	3
11	Clinical and Genome-Wide Analysis of Multiple Severe Cisplatin-Induced Neurotoxicities in Adult-Onset Cancer Survivors. Clinical Cancer Research, 2020, 26, 6550-6558.	7.0	9
12	Integration of genetic and functional genomics data to uncover chemotherapeutic induced cytotoxicity. Pharmacogenomics Journal, 2019, 19, 178-190.	2.0	0
13	Clinical and Genome-Wide Analysis of Serum Platinum Levels after Cisplatin-Based Chemotherapy. Clinical Cancer Research, 2019, 25, 5913-5924.	7.0	16
14	Clinical and Genome-wide Analysis of Cisplatin-induced Tinnitus Implicates Novel Ototoxic Mechanisms. Clinical Cancer Research, 2019, 25, 4104-4116.	7.0	27
15	RegSNPs-intron: a computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biology, 2019, 20, 254.	8.8	52
16	Genetic and Modifiable Risk Factors Contributing to Cisplatin-induced Toxicities. Clinical Cancer Research, 2019, 25, 1147-1155.	7.0	72
17	Adverse Health Outcomes in Relationship to Hypogonadism After Chemotherapy: A Multicenter Study of Testicular Cancer Survivors. Journal of the National Comprehensive Cancer Network: JNCCN, 2019, 17, 459-468.	4.9	13
18	Gene and MicroRNA Perturbations of Cellular Response to Pemetrexed Implicate Biological Networks and Enable Imputation of Response in Lung Adenocarcinoma. Scientific Reports, 2018, 8, 733.	3.3	12

#	Article	lF	CITATIONS
19	Predicting Cardiovascular Disease Among Testicular Cancer Survivors After Modern Cisplatin-based Chemotherapy: Application of the Framingham Risk Score. Clinical Genitourinary Cancer, 2018, 16, e761-e769.	1.9	28
20	Racial disparities in omission of oncotype DX but no racial disparities in chemotherapy receipt following completed oncotype DX test results. Breast Cancer Research and Treatment, 2018, 168, 207-220.	2.5	26
21	Role of Germline Genetics in Identifying Survivors at Risk for Adverse Effects of Cancer Treatment. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2018, 38, 775-786.	3.8	12
22	Peripheral neuropathy in children and adolescents treated for cancer. The Lancet Child and Adolescent Health, 2018, 2, 744-754.	5.6	41
23	Variants in <i>WFS1</i> and Other Mendelian Deafness Genes Are Associated with Cisplatin-Associated Ototoxicity. Clinical Cancer Research, 2017, 23, 3325-3333.	7.0	65
24	Genome-Wide Association Studies of Chemotherapeutic Toxicities: Genomics of Inequality. Clinical Cancer Research, 2017, 23, 4010-4019.	7.0	11
25	Clinical and Genome-Wide Analysis of Cisplatin-Induced Peripheral Neuropathy in Survivors of Adult-Onset Cancer. Clinical Cancer Research, 2017, 23, 5757-5768.	7.0	63
26	Identification of Novel Protein Expression Changes Following Cisplatin Treatment and Application to Combination Therapy. Journal of Proteome Research, 2017, 16, 4227-4236.	3.7	3
27	Application of stem cell derived neuronal cells to evaluate neurotoxic chemotherapy. Stem Cell Research, 2017, 22, 79-88.	0.7	56
28	Genetic Variants Contributing to Colistin Cytotoxicity: Identification of TGIF1 and HOXD10 Using a Population Genomics Approach. International Journal of Molecular Sciences, 2017, 18, 661.	4.1	2
29	Comprehensive Audiometric Analysis of Hearing Impairment and Tinnitus After Cisplatin-Based Chemotherapy in Survivors of Adult-Onset Cancer. Journal of Clinical Oncology, 2016, 34, 2712-2720.	1.6	197
30	Pharmacogenetic Discovery in CALGB (Alliance) 90401 and Mechanistic Validation of a <i>VAC14</i> Polymorphism that Increases Risk of Docetaxel-Induced Neuropathy. Clinical Cancer Research, 2016, 22, 4890-4900.	7.0	46
31	Evaluation of inter-batch differences in stem-cell derived neurons. Stem Cell Research, 2016, 16, 140-148.	0.7	17
32	Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 2016, 140, 176-183.	1.4	196
33	SCAN database: facilitating integrative analyses of cytosine modification and expression QTL. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav025-bav025.	3.0	19
34	Modeling Chemotherapeutic Neurotoxicity with Human Induced Pluripotent Stem Cell-Derived Neuronal Cells. PLoS ONE, 2015, 10, e0118020.	2.5	88
35	Pharmacoethnicity in Paclitaxel-Induced Sensory Peripheral Neuropathy. Clinical Cancer Research, 2015, 21, 4337-4346.	7.0	39
36	Characterization of CpG sites that escape methylation on the inactive human X-chromosome. Epigenetics, 2015, 10, 810-818.	2.7	9

#	Article	IF	CITATIONS
37	Association of an Inherited Genetic Variant With Vincristine-Related Peripheral Neuropathy in Children With Acute Lymphoblastic Leukemia. JAMA - Journal of the American Medical Association, 2015, 313, 815.	7.4	234
38	Hydroxylation and <i>N-</i> Dechloroethylation of Ifosfamide and Deuterated Ifosfamide by the Human Cytochrome P450s and Their Commonly Occurring Polymorphisms. Drug Metabolism and Disposition, 2015, 43, 1084-1090.	3.3	21
39	Chemotherapy-Induced Peripheral Neurotoxicity and Ototoxicity: New Paradigms for Translational Genomics. Journal of the National Cancer Institute, 2014, 106, dju044-dju044.	6.3	94
40	Protein Quantitative Trait Loci Identify Novel Candidates Modulating Cellular Response to Chemotherapy. PLoS Genetics, 2014, 10, e1004192.	3.5	29
41	Linking the genetic architecture of cytosine modifications with human complex traits. Human Molecular Genetics, 2014, 23, 5893-5905.	2.9	36
42	The Role of Gene Body Cytosine Modifications in <i>MGMT</i> Expression and Sensitivity to Temozolomide. Molecular Cancer Therapeutics, 2014, 13, 1334-1344.	4.1	40
43	Poly-Omic Prediction of Complex Traits: OmicKriging. Genetic Epidemiology, 2014, 38, 402-415.	1.3	41
44	Identification of genetic variants associated with capecitabine-induced hand–foot syndrome through integration of patient and cell line genomic analyses. Pharmacogenetics and Genomics, 2014, 24, 231-237.	1.5	10
45	Integrating Cell-Based and Clinical Genome-Wide Studies to Identify Genetic Variants Contributing to Treatment Failure in Neuroblastoma Patients. Clinical Pharmacology and Therapeutics, 2014, 95, 644-652.	4.7	7
46	Pharmacokinetics and pharmacogenomics of daunorubicin in children: a report from the Children's Oncology Group. Cancer Chemotherapy and Pharmacology, 2014, 74, 831-838.	2.3	21
47	Identification and Validation of Genetic Variants that Influence Transcription Factor and Cell Signaling Protein Levels. American Journal of Human Genetics, 2014, 95, 194-208.	6.2	54
48	Influence of polymorphisms discovered in cell-based model of cytarabine sensitivity on outcome in pediatric AML: A Children's Oncology Group Study Journal of Clinical Oncology, 2014, 32, 10040-10040.	1.6	0
49	Genome-Wide Variation of Cytosine Modifications Between European and African Populations and the Implications for Complex Traits. Genetics, 2013, 194, 987-996.	2.9	117
50	Cancer pharmacogenomics: strategies and challenges. Nature Reviews Genetics, 2013, 14, 23-34.	16.3	192
51	Lymphoblastoid cell lines in pharmacogenomics: how applicable are they to clinical outcomes?. Pharmacogenomics, 2013, 14, 447-450.	1.3	8
52	Genetic and epigenetic variants contributing to clofarabine cytotoxicity. Human Molecular Genetics, 2013, 22, 4007-4020.	2.9	18
53	Cell cycle arrest in a model of colistin nephrotoxicity. Physiological Genomics, 2013, 45, 877-888.	2.3	40
54	<i>RRM1</i> and <i>RRM2</i> pharmacogenetics: association with phenotypes in HapMap cell lines and acute myeloid leukemia patients. Pharmacogenomics, 2013, 14, 1449-1466.	1.3	27

#	Article	IF	CITATIONS
55	Institutional Profile: University of Chicago Center for Personalized Therapeutics: research, education and implementation science. Pharmacogenomics, 2013, 14, 1383-1387.	1.3	9
56	Comprehensive genetic analysis of cytarabine sensitivity in a cell-based model identifies polymorphisms associated with outcome in AML patients. Blood, 2013, 121, 4366-4376.	1.4	42
57	EPS8 Inhibition Increases Cisplatin Sensitivity in Lung Cancer Cells. PLoS ONE, 2013, 8, e82220.	2.5	16
58	Identification of pharmacogenetic target genes associated with chemotherapy-induced peripheral neuropathy Journal of Clinical Oncology, 2013, 31, e13541-e13541.	1.6	0
59	Mixed Effects Modeling of Proliferation Rates in Cell-Based Models: Consequence for Pharmacogenomics and Cancer. PLoS Genetics, 2012, 8, e1002525.	3.5	26
60	Variants Affecting Exon Skipping Contribute to Complex Traits. PLoS Genetics, 2012, 8, e1002998.	3.5	53
61	An eQTL-based method identifies CTTN and ZMAT3 as pemetrexed susceptibility markers. Human Molecular Genetics, 2012, 21, 1470-1480.	2.9	16
62	Trans-population Analysis of Genetic Mechanisms of Ethnic Disparities in Neuroblastoma Survival. Journal of the National Cancer Institute, 2012, 105, 302-309.	6.3	30
63	Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation. Pharmacogenomics, 2012, 13, 55-70.	1.3	101
64	Regulatory Polymorphisms in Î ² -Tubulin IIa Are Associated with Paclitaxel-Induced Peripheral Neuropathy. Clinical Cancer Research, 2012, 18, 4441-4448.	7.0	61
65	Whole-genome studies identify solute carrier transporters in cellular susceptibility to paclitaxel. Pharmacogenetics and Genomics, 2012, 22, 498-507.	1.5	28
66	Clinical Translation of Cell-Based Pharmacogenomic Discovery. Clinical Pharmacology and Therapeutics, 2012, 92, 425-427.	4.7	24
67	Systems and genome-wide approaches unite to provide a route to personalized medicine. Genome Medicine, 2012, 4, 29.	8.2	1
68	Pharmacogenomics of chemotherapeutic susceptibility and toxicity. Genome Medicine, 2012, 4, 90.	8.2	38
69	Using Germline Genomics to Individualize Pediatric Cancer Treatments. Clinical Cancer Research, 2012, 18, 2791-2800.	7.0	25
70	Relating human genetic variation to variation in drug responses. Trends in Genetics, 2012, 28, 487-495.	6.7	76
71	Functional genetic screen of human diversity reveals that a methionine salvage enzyme regulates inflammatory cell death. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2343-52.	7.1	59
72	Functional consequences of PRPF39 on distant genes and cisplatin sensitivity. Human Molecular Genetics, 2012, 21, 4348-4355.	2.9	7

#	Article	IF	CITATIONS
73	Identification of novel germline polymorphisms governing capecitabine sensitivity. Cancer, 2012, 118, 4063-4073.	4.1	25
74	Germline polymorphisms discovered via a cell-based, genome-wide approach predict platinum response in head and neck cancers. Translational Research, 2011, 157, 265-272.	5.0	42
75	Copy number polymorphisms and anticancer pharmacogenomics. Genome Biology, 2011, 12, R46.	9.6	25
76	An Integrated Genomic Approach to the Assessment and Treatment of Acute Myeloid Leukemia. Seminars in Oncology, 2011, 38, 215-224.	2.2	21
77	The Use of Genomic Information to Optimize Cancer Chemotherapy. Seminars in Oncology, 2011, 38, 186-195.	2.2	27
78	Platinum Sensitivity–Related Germline Polymorphism Discovered via a Cell-Based Approach and Analysis of Its Association with Outcome in Ovarian Cancer Patients. Clinical Cancer Research, 2011, 17, 5490-5500.	7.0	57
79	Population differences in microRNA expression and biological implications. RNA Biology, 2011, 8, 692-701.	3.1	138
80	Genetics and Variable Drug Response. JAMA - Journal of the American Medical Association, 2011, 306, 306-7.	7.4	50
81	Multicenter Phase II Trial of Temozolomide in Mycosis Fungoides/Sézary Syndrome: Correlation with <i>O</i> 6-Methylguanine-DNA Methyltransferase and Mismatch Repair Proteins. Clinical Cancer Research, 2011, 17, 5748-5754.	7.0	29
82	Genetic Variants in Cytosolic 5′-Nucleotidase II Are Associated with Its Expression and Cytarabine Sensitivity in HapMap Cell Lines and in Patients with Acute Myeloid Leukemia. Journal of Pharmacology and Experimental Therapeutics, 2011, 339, 9-23.	2.5	50
83	Comprehensive Evaluation of the Contribution of X Chromosome Genes to Platinum Sensitivity. Molecular Cancer Therapeutics, 2011, 10, 472-480.	4.1	5
84	Genome-Wide Local Ancestry Approach Identifies Genes and Variants Associated with Chemotherapeutic Susceptibility in African Americans. PLoS ONE, 2011, 6, e21920.	2.5	25
85	Population differences in platinum toxicity as a means to identify novel genetic susceptibility variants. Pharmacogenetics and Genomics, 2010, 20, 327-337.	1.5	30
86	Population Differences in the Rate of Proliferation of International HapMap Cell Lines. American Journal of Human Genetics, 2010, 87, 829-833.	6.2	19
87	Comprehensive Survey of SNPs in the Affymetrix Exon Array Using the 1000 Genomes Dataset. PLoS ONE, 2010, 5, e9366.	2.5	18
88	Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS. PLoS Genetics, 2010, 6, e1000888.	3.5	1,161
89	Testicular Cancer Survivorship: Research Strategies and Recommendations. Journal of the National Cancer Institute, 2010, 102, 1114-1130.	6.3	260
90	Chemotherapeutic drug susceptibility associated SNPs are enriched in expression quantitative trait loci. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 9287-9292.	7.1	103

#	Article	IF	CITATIONS
91	SCAN: SNP and copy number annotation. Bioinformatics, 2010, 26, 259-262.	4.1	214
92	Approaches to the discovery of pharmacogenomic markers in oncology: 2000–2010–2020. Pharmacogenomics, 2010, 11, 471-474.	1.3	13
93	Impact of the 1000 Genomes Project on the next wave of pharmacogenomic discovery. Pharmacogenomics, 2010, 11, 249-256.	1.3	43
94	ExprTarget: An Integrative Approach to Predicting Human MicroRNA Targets. PLoS ONE, 2010, 5, e13534.	2.5	80
95	The emerging role of microRNAs in drug responses. Current Opinion in Molecular Therapeutics, 2010, 12, 695-702.	2.8	30
96	Comprehensive analysis of the impact of SNPs and CNVs on human microRNAs and their regulatory genes. RNA Biology, 2009, 6, 412-425.	3.1	58
97	Pharmacogenomic Discovery Using Cell-Based Models. Pharmacological Reviews, 2009, 61, 413-429.	16.0	109
98	Mouse models of human AML accurately predict chemotherapy response. Genes and Development, 2009, 23, 877-889.	5.9	235
99	Population-specific GSTM1 copy number variation. Human Molecular Genetics, 2009, 18, 366-372.	2.9	34
100	Cancer Pharmacoethnicity: Ethnic Differences in Susceptibility to the Effects of Chemotherapy. Clinical Cancer Research, 2009, 15, 4806-4814.	7.0	212
101	The kinase inhibitor O6-cyclohexylmethylguanine (NU2058) potentiates the cytotoxicity of cisplatin by mechanisms that are independent of its effect upon CDK2. Biochemical Pharmacology, 2009, 77, 1586-1592.	4.4	9
102	Identification of common genetic variants that account for transcript isoform variation between human populations. Human Genetics, 2009, 125, 81-93.	3.8	75
103	Identification of genomic regions contributing to etoposide-induced cytotoxicity. Human Genetics, 2009, 125, 173-180.	3.8	51
104	The Werner's syndrome 4330T>C (Cys1367Arg) gene variant does not affect the in vitro cytotoxicity of topoisomerase inhibitors and platinum compounds. Cancer Chemotherapy and Pharmacology, 2009, 63, 881-887.	2.3	4
105	Role of copper transporters in resistance to platinating agents. Cancer Chemotherapy and Pharmacology, 2009, 64, 133-142.	2.3	34
106	Comprehensive Pharmacogenetic Analysis of Irinotecan Neutropenia and Pharmacokinetics. Journal of Clinical Oncology, 2009, 27, 2604-2614.	1.6	236
107	Poly(ADP-ribose) polymerase inhibitor ABT-888 potentiates the cytotoxic activity of temozolomide in leukemia cells: influence of mismatch repair status and <i>O</i> 6-methylguanine-DNA methyltransferase activity. Molecular Cancer Therapeutics, 2009, 8, 2232-2242.	4.1	77
108	Drug Focus: Pharmacogenetic studies related to cyclophosphamide-based therapy. Pharmacogenomics, 2009, 10, 1897-1903.	1.3	77

#	Article	IF	CITATIONS
109	Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood, 2009, 113, 2145-2153.	1.4	81
110	Whole-genome approach implicates CD44 in cellular resistance to carboplatin. Human Genomics, 2009, 3, 128.	2.9	23
111	Use of Cell Lines in the Investigation of Pharmacogenetic Loci. Current Pharmaceutical Design, 2009, 15, 3782-3795.	1.9	35
112	Gene set enrichment analyses revealed differences in gene expression patterns between males and females. In Silico Biology, 2009, 9, 55-63.	0.9	15
113	Phase I study of the ribonucleotide reductase inhibitor 3-aminopyridine-2-carboxaldehyde-thiosemicarbazone (3-AP) in combination with high dose cytarabine in patients with advanced myeloid leukemia. Investigational New Drugs, 2008, 26, 233-239.	2.6	45
114	Evaluation of Genetic Variation Contributing to Differences in Gene Expression between Populations. American Journal of Human Genetics, 2008, 82, 631-640.	6.2	192
115	Creating and evaluating genetic tests predictive of drug response. Nature Reviews Drug Discovery, 2008, 7, 568-574.	46.4	51
116	Genetic Architecture of Transcript-Level Variation in Humans. American Journal of Human Genetics, 2008, 82, 1101-1113.	6.2	142
117	Survival and tumorigenesis in O6-methylguanine DNA methyltransferase-deficient mice following cyclophosphamide exposure. Mutagenesis, 2008, 23, 341-346.	2.6	5
118	Genetic Variants Contributing to Daunorubicin-Induced Cytotoxicity. Cancer Research, 2008, 68, 3161-3168.	0.9	74
119	Cenetic variants associated with carboplatin-induced cytotoxicity in cell lines derived from Africans. Molecular Cancer Therapeutics, 2008, 7, 3038-3046.	4.1	66
120	Enhancement of Cisplatin [<i>cis</i> -Diammine Dichloroplatinum (II)] Cytotoxicity by <i>O</i> ⁶ -Benzylguanine Involves Endoplasmic Reticulum Stress. Journal of Pharmacology and Experimental Therapeutics, 2008, 327, 442-452.	2.5	38
121	Beyond the HapMap Genotypic Data: Prospects of Deep Resequencing Projects. Current Bioinformatics, 2008, 3, 178-182.	1.5	16
122	The HapMap Resource is Providing New Insights into Ourselves and its Application to Pharmacogenomics. Bioinformatics and Biology Insights, 2008, 2, BBI.S455.	2.0	49
123	Susceptibility loci involved in cisplatin-induced cytotoxicity and apoptosis. Pharmacogenetics and Genomics, 2008, 18, 253-262.	1.5	41
124	On the challenges of the HapMap resource. Bioinformation, 2008, 2, 238-239.	0.5	11
125	HapMap filter 1.0: A tool to preprocess the HapMap genotypic data for association studies. Bioinformation, 2008, 2, 322-324.	O.5	2
126	SNPinProbe_1.0: A database for filtering out probes in the Affymetrix GeneChip® Human Exon 1.0 ST array potentially affected by SNPs. Bioinformation, 2008, 2, 469-470.	0.5	33

#	Article	IF	CITATIONS
127	Cell-Based Models to Identify Genetic Variants Contributing to Anticancer Drug Response. , 2008, , 19-31.		0
128	Cell-based Models for Discovery of Pharmacogenomic Markers of Anticancer Agent Toxicity. Trends in Cancer Research, 2008, 4, 1-13.	1.6	6
129	A genome-wide approach to identify genetic variants that contribute to etoposide-induced cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9758-9763.	7.1	195
130	Effect of population and gender on chemotherapeutic agent–induced cytotoxicity. Molecular Cancer Therapeutics, 2007, 6, 31-36.	4.1	82
131	Inhibition of Nuclear Factor-κB Activity by Temozolomide Involves <i>O</i> 6-Methylguanine–Induced Inhibition of p65 DNA Binding. Cancer Research, 2007, 67, 6889-6898.	0.9	36
132	Mapping Genes that Contribute to Daunorubicin-Induced Cytotoxicity. Cancer Research, 2007, 67, 5425-5433.	0.9	80
133	Molecular mechanisms of resistance and toxicity associated with platinating agents. Cancer Treatment Reviews, 2007, 33, 9-23.	7.7	1,338
134	Identification of Genetic Variants Contributing to Cisplatin-Induced Cytotoxicity by Use of a Genomewide Approach. American Journal of Human Genetics, 2007, 81, 427-437.	6.2	173
135	Identifying genetic variants that contribute to chemotherapy-induced cytotoxicity. Pharmacogenomics, 2007, 8, 1159-1168.	1.3	26
136	Role of MGMT in protecting against cyclophosphamide-induced toxicity in cells and animals. DNA Repair, 2007, 6, 1145-1154.	2.8	20
137	Etoposide Sensitivity Does Not Predict MLL Rearrangements or Risk of Therapy-Related Acute Myeloid Leukemia Blood, 2007, 110, 1829-1829.	1.4	0
138	Inactivation of O6-alkylguanine DNA alkyltransferase as a means to enhance chemotherapy. Cancer Treatment Reviews, 2006, 32, 261-276.	7.7	84
139	A phase II trial of O 6-benzylguanine and carmustine in patients with advanced soft tissue sarcoma. Cancer Chemotherapy and Pharmacology, 2006, 58, 634-639.	2.3	35
140	Role of GADD34 in modulation of cisplatin cytotoxicity. Biochemical Pharmacology, 2006, 71, 239-247.	4.4	12
141	Role of O6-methylguanine-DNA methyltransferase in protecting from alkylating agent-induced toxicity and mutations in mice. Carcinogenesis, 2006, 28, 1111-1116.	2.8	35
142	Somatic Acquisition and Signaling of <emph type="ITAL">TGFBR1</emph> *6A in Cancer. JAMA - Journal of the American Medical Association, 2005, 294, 1634.	7.4	87
143	Role of glutathione and nucleotide excision repair in modulation of cisplatin activity with O6-benzylguanine. Cancer Chemotherapy and Pharmacology, 2005, 55, 333-342.	2.3	16
144	Poly(ADP-ribose) polymerase-1 inhibition reverses temozolomide resistance in a DNA mismatch repair–deficient malignant glioma xenograft. Molecular Cancer Therapeutics, 2005, 4, 1364-1368.	4.1	173

#	Article	IF	CITATIONS
145	Effect of Cell Cycle Inhibition on Cisplatin-Induced Cytotoxicity. Journal of Pharmacology and Experimental Therapeutics, 2005, 312, 206-213.	2.5	21
146	Role ofO6-Alkylguanine-DNA Alkyltransferase in Protecting against 1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU)-Induced Long-Term Toxicities. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1247-1255.	2.5	10
147	Use of CEPH and non-CEPH lymphoblast cell lines in pharmacogenetic studies. Pharmacogenomics, 2005, 6, 303-310.	1.3	36
148	A functional common polymorphism in a Sp1 recognition site of the epidermal growth factor receptor gene promoter. Cancer Research, 2005, 65, 46-53.	0.9	133
149	Heritability and Linkage Analysis of Sensitivity to Cisplatin-Induced Cytotoxicity. Cancer Research, 2004, 64, 4353-4356.	0.9	108
150	Allelic Loss at the GPx-1 Locus in Cancer of the Head and Neck. Biological Trace Element Research, 2004, 101, 097-106.	3.5	45
151	1,3- vs 1,5-Intramolecular Alkylation Reactions in Isophosphoramide and Phosphoramide Mustards. Chemical Research in Toxicology, 2004, 17, 1217-1226.	3.3	4
152	Brain tumor cell lines resistant to O6-benzylguanine/1,3-bis(2-chloroethyl)-1-nitrosourea chemotherapy have O6-alkylguanine-DNA alkyltransferase mutations. Molecular Cancer Therapeutics, 2004, 3, 1127-35.	4.1	28
153	Selective enhancement of ifosfamide-induced toxicity in Chinese hamster ovary cells. Cancer Chemotherapy and Pharmacology, 2003, 52, 291-302.	2.3	7
154	Pharmacogenomics – Racing Towards Personalized Prescriptions. Laboratory Medicine, 2003, 34, 651-659.	1.2	2
155	Temozolomide: realizing the promise and potential. Current Opinion in Oncology, 2003, 15, 412-418.	2.4	32
156	O6-Methylguanine-DNA Methyltransferase Activity and Promoter Methylation Status in Pediatric Rhabdomyosarcoma. Journal of Pediatric Hematology/Oncology, 2003, 25, 941-947.	0.6	7
157	Enhancement of platinum-induced cytotoxicity by O6-benzylguanine. Molecular Cancer Therapeutics, 2003, 2, 633-40.	4.1	26
158	Silence Is Golden: Gene Hypermethylation and Survival in Large-Cell Lymphoma. Journal of the National Cancer Institute, 2002, 94, 6-7.	6.3	6
159	Phase II Trial of Carmustine Plus O6-Benzylguanine for Patients With Nitrosourea-Resistant Recurrent or Progressive Malignant Glioma. Journal of Clinical Oncology, 2002, 20, 2277-2283.	1.6	178
160	Modified Guanines RepresentingO6-Alkylation by the Cyclophosphamide Metabolites Acrolein and Chloroacetaldehyde:Â Synthesis, Stability, and ab Initio Studies. Chemical Research in Toxicology, 2002, 15, 380-387.	3.3	11
161	Determination of the optimal modulatory dose of O6-benzylguanine in patients with surgically resectable tumors. Clinical Cancer Research, 2002, 8, 2519-23.	7.0	16
162	Irinotecan activation by human carboxylesterases in colorectal adenocarcinoma cells. Clinical Cancer Research, 2002, 8, 2696-700.	7.0	59

#	Article	IF	CITATIONS
163	O6-benzylguanine-mediated enhancement of chemotherapy. Molecular Cancer Therapeutics, 2002, 1, 943-8.	4.1	67
164	Inactivation of O 6-alkylguanine-DNA alkyltransferase by 8-substituted O 6-benzylguanine analogs in mice. Cancer Chemotherapy and Pharmacology, 2001, 47, 63-69.	2.3	10
165	High Efficiency Electroporation of Human Umbilical Cord Blood CD34+Hematopoietic Precursor Cells. Stem Cells, 2001, 19, 492-499.	3.2	25
166	Debenzylation of O6-benzyl-8-oxoguanine in human liver: implications for O6-benzylguanine metabolism. Biochemical Pharmacology, 2001, 61, 721-726.	4.4	14
167	Concomitant Chemoradiotherapy as Primary Therapy for Locoregionally Advanced Head and Neck Cancer. Journal of Clinical Oncology, 2000, 18, 1652-1661.	1.6	190
168	Pharmacokinetics of oral O 6 -benzylguanine and evidence of interaction with oral ketoconazole in the rat. Cancer Chemotherapy and Pharmacology, 2000, 46, 150-155.	2.3	2
169	O 6 -Benzylguanine-mediated enhancement of nitrosourea activity in Mer â^' central nervous system tumor xenografts - implications for clinical trials. Cancer Chemotherapy and Pharmacology, 2000, 45, 437-440.	2.3	18
170	Phase I Trial of Carmustine Plus O6-Benzylguanine for Patients With Recurrent or Progressive Malignant Glioma. Journal of Clinical Oncology, 2000, 18, 3522-3528.	1.6	125
171	Modulation of cyclophosphamide activity by O ? 6 -alkylguanine-DNA alkyltransferase. Cancer Chemotherapy and Pharmacology, 1999, 43, 80-85.	2.3	47
172	Effects of polyamine analogues on prostatic adenocarcinoma cells in vitro and in vivo. Cancer Chemotherapy and Pharmacology, 1998, 41, 505-512.	2.3	27
173	Effects of 1,2-naphthoquinones on human tumor cell growth and lack of cross-resistance with other anticancer agents. Anti-Cancer Drugs, 1998, 9, 437-448.	1.4	40
174	Inhibition of DNA repair as a means of increasing the antitumor activity of DNA reactive agents. Advanced Drug Delivery Reviews, 1997, 26, 105-118.	13.7	48
175	Intraarterial O 6 -benzylguanine enables the specific therapy of nitrosourea-resistant intracranial human glioma xenografts in athymic rats with 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemotherapy and Pharmacology, 1997, 39, 307-316.	2.3	19
176	Intracellular localization and intercellular heterogeneity of the human DNA repair protein O 6 -methylguanine-DNA methyltransferase. Cancer Chemotherapy and Pharmacology, 1996, 37, 547-555.	2.3	67
177	Peripheral blood mononuclear cell dihydropyrimidine dehydrogenase activity in volunteers with and without diabetes mellitus. Cancer Chemotherapy and Pharmacology, 1996, 37, 569-573.	2.3	5
178	8-Substituted O6-Benzylguanine, Substituted 6(4)-(Benzyloxy)pyrimidine, and Related Derivatives as Inactivators of Human O6-Alkylguanine-DNA Alkyltransferase. Journal of Medicinal Chemistry, 1995, 38, 359-365.	6.4	86
179	Structure, Function, and Inhibition of O6-Alkylguanine-DNA Alkyltransferase. Progress in Molecular Biology and Translational Science, 1995, 51, 167-223.	1.9	417
180	Sequential therapy with dacarbazine and carmustine: a phase I study. Cancer Chemotherapy and Pharmacology, 1994, 34, 509-514.	2.3	9

#	Article	IF	CITATIONS
181	Anti-neoplastic activity of sequenced administration of O6-benzylguanine, streptozotocin, and 1,3-bis(2-chloroethyl)-1-nitrosourea in vitro and in vivo. Biochemical Pharmacology, 1994, 48, 2127-2134.	4.4	19
182	Substituted O6-Benzylguanine Derivatives and Their Inactivation of Human O6-Alkylguanine-DNA Alkyltransferase. Journal of Medicinal Chemistry, 1994, 37, 342-347.	6.4	68
183	Metabolism and Disposition of O6-Benzyl-2'-deoxyguanosine in Sprague-Dawley Rats. Chemical Research in Toxicology, 1994, 7, 762-769.	3.3	4
184	Sequential therapy with dacarbazine and carmustine: a phase I study. Cancer Chemotherapy and Pharmacology, 1994, 34, 509-514.	2.3	1
185	Effect ofO 6-benzylguanine on the response to 1,3-bis(2-chloroethyl)-1-nitrosourea in the Dunning R3327G model of prostatic cancer. Cancer Chemotherapy and Pharmacology, 1993, 32, 221-225.	2.3	27
186	Effect of temozolomide and dacarbazine on O6-alkylguanine-DNA alkyltransferase activity and sensitivity of human tumor cells and xenografts to 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemotherapy and Pharmacology, 1993, 32, 59-63.	2.3	43
187	Treatment of subcutaneous and intracranial brain tumor xenografts withO 6-benzylguanine and 1,3-bis(2-chloroethyl)-1-nitrosourea. Cancer Chemotherapy and Pharmacology, 1993, 32, 471-476.	2.3	61
188	The effects ofO 6-benzylguanine and hypoxia on the cytotoxicity of 1,3-bis(2-chloroethyl)-1-nitrosourea in nitrosourea-resistant SF-763 cells. Cancer Chemotherapy and Pharmacology, 1993, 32, 477-481.	2.3	19
189	The role of O6-alkylguanine-DNA alkyltransferase in protecting Rat4 cells against the mutagenic effects of O6-substituted guanine residues incorporated in codon 12 of the H-ras gene. Carcinogenesis, 1993, 14, 593-598.	2.8	13
190	Structural features of substituted purine derivatives compatible with depletion of human O6-alkylguanine-DNA alkyltransferase. Journal of Medicinal Chemistry, 1992, 35, 4486-4491.	6.4	103
191	Comparison of the inactivation of mammalian and bacterial O6-alkylguanine-DNA alkyltransferases by O6-benzylguanine and O6-methylguanine. Carcinogenesis, 1991, 12, 2305-2309.	2.8	57
192	Modulation of Mammalian O6-Alkylguanine-DNA Alkyltransferase in vivo by O6-Benzylguanine and its Effect on the Sensitivity of a Human Glioma Tumor to l-(2-chloroethyl)-3-(4-methylcyclohexyl)-l-nitrosourea. European Journal of Implant and Refractive Surgery, 1990, 2, 371-377.	0.3	81
193	Depletion of O6-alkylguanine-DNA alkyltransferase activity in mammalian tissues and human tumor xenografts in nude mice by treatment with O6-methylguanine. Cancer Chemotherapy and Pharmacology, 1989, 25, 103-108.	2.3	29
194	Intracellular activation of cytotoxic agents: kinetic models for methylnitrosoureas and N-methyl-N'-nitro-N-nitrosoguanidine in cell culture. Chemical Research in Toxicology, 1989, 2, 157-161.	3.3	2
195	Repair of O6-propylguanine and O6-butylguanine in DNA by O6-alkylguanine-DNA alkyltransferases from rat liver and E. coli. Carcinogenesis, 1985, 6, 1027-1031.	2.8	91
196	Studies of the Repair of O 6 -Alkylguanine and O 4 -Alkylthymine in DNA by Alkyltransferases from Mammalian Cells and Bacteria. Environmental Health Perspectives, 1985, 62, 109.	6.0	31
197	Correlation between O6-methylguanine-DNA-methyltransferase activity and resistance of human cells to the cytotoxic and mutagenic effect of N-methyl-N′-nitro-N-nitrosoguanidine. Carcinogenesis, 1984, 5, 1641-1647.	2.8	130
198	An analysis of 1-(2-chloroethyl)-1-nitrosourea activity at the cellular level. Journal of Medicinal Chemistry, 1983, 26, 1656-1659.	6.4	10

		TIONS
199 Oncologic Drugs. , 0, , 97-114.	0	