Tom Bennett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952944/publications.pdf

Version: 2024-02-01

44 4,264 papers citations

4,264 26 41 citations h-index g-index

57 57 all docs citations

57 times ranked 3994 citing authors

#	Article	IF	CITATIONS
1	Strigolactone Signaling and Evolution. Annual Review of Plant Biology, 2017, 68, 291-322.	18.7	470
2	The Arabidopsis MAX Pathway Controls Shoot Branching by Regulating Auxin Transport. Current Biology, 2006, 16, 553-563.	3.9	424
3	SMAX1-LIKE/D53 Family Members Enable Distinct MAX2-Dependent Responses to Strigolactones and Karrikins in Arabidopsis. Plant Cell, 2015, 27, 3143-3159.	6.6	339
4	Control of bud activation by an auxin transport switch. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17431-17436.	7.1	319
5	The NAC Domain Transcription Factors FEZ and SOMBRERO Control the Orientation of Cell Division Plane in Arabidopsis Root Stem Cells. Developmental Cell, 2008, 15, 913-922.	7.0	229
6	Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nature Plants, 2020, 6, 259-272.	9.3	225
7	SOMBRERO, BEARSKIN1, and BEARSKIN2 Regulate Root Cap Maturation in <i>Arabidopsis</i> ÂÂ. Plant Cell, 2010, 22, 640-654.	6.6	163
8	Strigolactone regulates shoot development through a core signalling pathway. Biology Open, 2016, 5, 1806-1820.	1.2	153
9	Root Development—Two Meristems for the Price of One?. Current Topics in Developmental Biology, 2010, 91, 67-102.	2.2	134
10	Plasma Membrane-Targeted PIN Proteins Drive Shoot Development in a Moss. Current Biology, 2014, 24, 2776-2785.	3.9	133
11	Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices. PLoS Biology, 2016, 14, e1002446.	5.6	133
12	SMAX1/SMXL2 regulate root and root hair development downstream of KAI2-mediated signalling in Arabidopsis. PLoS Genetics, 2019, 15, e1008327.	3.5	122
13	SMAX1-LIKE7 signals from the nucleus to regulate shoot development in Arabidopsis via partially EAR motif-independent mechanisms. Plant Cell, 2016, 28, tpc.00286.2016.	6.6	117
14	Paralogous Radiations of PIN Proteins with Multiple Origins of Noncanonical PIN Structure. Molecular Biology and Evolution, 2014, 31, 2042-2060.	8.9	111
15	<i>BRC1</i> expression regulates bud activation potential, but is not necessary or sufficient for bud growth inhibition in Arabidopsis. Development (Cambridge), 2017, 144, 1661-1673.	2.5	106
16	Canalization: what the flux?. Trends in Genetics, 2014, 30, 41-48.	6.7	99
17	Evolution of strigolactone receptors by gradual neo-functionalization of KAI2 paralogues. BMC Biology, 2017, 15, 52.	3.8	99
18	Something on the Side: Axillary Meristems and Plant Development. Plant Molecular Biology, 2006, 60, 843-854.	3.9	98

#	Article	IF	Citations
19	Strigolactone signalling: standing on the shoulders of DWARFs. Current Opinion in Plant Biology, 2014, 22, 7-13.	7.1	98
20	Strigolactone synthesis is ancestral in land plants, but canonical strigolactone signalling is a flowering plant innovation. BMC Biology, 2019, 17, 70.	3.8	92
21	Fellowship of the rings: a saga of strigolactones and other small signals. New Phytologist, 2020, 225, 621-636.	7.3	70
22	PIN proteins and the evolution of plant development. Trends in Plant Science, 2015, 20, 498-507.	8.8	63
23	Precise control of plant stem cell activity through parallel regulatory inputs. Development (Cambridge), 2014, 141, 4055-4064.	2.5	59
24	Connective auxin transport contributes to strigolactone-mediated shoot branching control independent of the transcription factor BRC1. PLoS Genetics, 2019, 15, e1008023.	3.5	50
25	Friends, neighbours and enemies: an overview of the communal and social biology of plants. Plant, Cell and Environment, 2021, 44, 997-1013.	5.7	46
26	Auxin export from proximal fruits drives arrest in temporally competent inflorescences. Nature Plants, 2020, 6, 699-707.	9.3	33
27	There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Seminars in Cell and Developmental Biology, 2021, 109, 55-67.	5.0	32
28	KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2. Current Biology, 2022, 32, 228-236.e3.	3.9	29
29	When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in <i>Aethionema</i> . Plant Journal, 2018, 94, 352-371.	5.7	20
30	Bloom and bust: understanding the nature and regulation of the end of flowering. Current Opinion in Plant Biology, 2020, 57, 24-30.	7.1	19
31	The Auxin Question: A Philosophical Overview., 2014,, 3-19.		14
32	Wheat plants sense substrate volume and root density to proactively modulate shoot growth. Plant, Cell and Environment, 2021, 44, 1202-1214.	5.7	14
33	Asymmetric expansions of FT and TFL1 lineages characterize differential evolution of the EuPEBP family in the major angiosperm lineages. BMC Biology, 2021, 19, 181.	3.8	13
34	Environmental strigolactone drives early growth responses to neighboring plants and soil volume in pea. Current Biology, 2022, 32, 3593-3600.e3.	3.9	13
35	Supra-organismal regulation of strigolactone exudation and plant development in response to rhizospheric cues in rice. Current Biology, 2022, 32, 3601-3608.e3.	3.9	12
36	Strigolactones as Plant Hormones. , 2019, , 47-87.		9

Том Веннетт

#	Article	lF	CITATIONS
37	KAI2 regulates seedling development by mediating lightâ€induced remodelling of auxin transport. New Phytologist, 2022, 235, 126-140.	7.3	9
38	Plant–plant interactions. Plant, Cell and Environment, 2021, 44, 995-996.	5.7	8
39	Integrated dominance mechanisms regulate reproductive architecture in <i>Arabidopsis thaliana</i> Brassica napus. Plant Physiology, 2021, 186, 1985-2002.	4.8	5
40	Two routes to germinate a seed. Nature Plants, 2020, 6, 602-603.	9.3	5
41	A distributive â€~50% rule' determines floral initiation rates in the Brassicaceae. Nature Plants, 2019, 5, 940-943.	9.3	3
42	Root Development: A Go-Faster Stripe and Spoilers. Developmental Cell, 2020, 53, 372-374.	7.0	2
43	The evolution of hormonal signalling in plant development. Seminars in Cell and Developmental Biology, 2021, 109, 1-2.	5.0	1
44	Response to Prof Tomescu. Plant Molecular Biology, 2006, 62, 483-483.	3.9	0