Kyle Wm Hall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952629/publications.pdf

Version: 2024-02-01

		1040056	1125743
13	202	9	13
papers	citations	h-index	g-index
18	18	18	223
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Chain-End Modification: A Starting Point for Controlling Polymer Crystal Nucleation. Macromolecules, 2021, 54, 1599-1610.	4.8	8
2	Quasi-continuous melting of model polymer monolayers prompts reinterpretation of polymer melting. Nature Communications, 2021, 12, 1710.	12.8	13
3	Roughening Transition and Quasi-continuous Melting of Monolayers of Ultra-long Alkanes: Why Bulk Polymer Melting Is Strongly First-Order. Macromolecules, 2021, 54, 10135-10149.	4.8	7
4	Property Decoupling across the Embryonic Nucleus–Melt Interface during Polymer Crystal Nucleation. Journal of Physical Chemistry B, 2020, 124, 4793-4804.	2.6	12
5	Monodisperse Polymer Melts Crystallize via Structurally Polydisperse Nanoscale Clusters: Insights from Polyethylene. Polymers, 2020, 12, 447.	4.5	6
6	A coarse-grain model for entangled polyethylene melts and polyethylene crystallization. Journal of Chemical Physics, 2019, 150, 244901.	3.0	23
7	Characterizing key features in the formation of ice and gas hydrate systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377, 20180167.	3.4	22
8	Polymer nucleation under high-driving force, long-chain conditions: Heat release and the separation of time scales. Journal of Chemical Physics, 2019, 150, 114901.	3.0	13
9	Divining the shape of nascent polymer crystal nuclei. Journal of Chemical Physics, 2019, 151, 144901.	3.0	11
10	Does Local Structure Bias How a Crystal Nucleus Evolves?. Journal of Physical Chemistry Letters, 2018, 9, 6991-6998.	4.6	19
11	Unraveling Mixed Hydrate Formation: Microscopic Insights into Early Stage Behavior. Journal of Physical Chemistry B, 2016, 120, 13218-13223.	2.6	14
12	Evidence from mixed hydrate nucleation for a funnel model of crystallization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12041-12046.	7.1	47
13	Algorithms for <scp>GPU</scp> â€based molecular dynamics simulations of complex fluids: Applications to water, mixtures, and liquid crystals. Journal of Computational Chemistry, 2015, 36, 1787-1804.	3.3	7