Khaled Morsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952153/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of Preheating by Direct Electric Current on the Self-propagating High-Temperature Synthesis of Ni3Al-CNT Intermetallic Nanocomposites. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2022, 53, 2823-2831.	2.2	1
2	Electrically Activated Reaction Synthesis of Ni-CNT/Al Hierarchical Composite Powders. Journal of Engineering Materials and Technology, Transactions of the ASME, 2021, 143, .	1.4	1
3	Effect of Shortening Carbon Nanotubes on Carbon Nanotube Dispersion, Damage and Mechanical Behavior of Carbon Nanotube-Metal Matrix Nanocomposites. Metallography, Microstructure, and Analysis, 2021, 10, 167-173.	1.0	1
4	Reactive processing and properties of nickel aluminide–carbon nanotube composites. Journal of Materials Science, 2021, 56, 19501-19511.	3.7	2
5	Novel Ballistic Processing of Thick Films: Structural Evolution and Mechanical Behavior. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 6432-6438.	2.2	0
6	Novel Spark Plasma Extrusion of Titanium Above and Below the β-Transus: Effect on Microstructure and Properties. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1363-1369.	2.1	3
7	Novel Electro-Combustion Forging of Ni-Ti Intermetallic Nanocomposites. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 1344-1349.	2.1	1
8	Electrically-activated reactive synthesis (EARS) and electro-annealing of Ni/CNT-Al nanocomposite powders. Journal of Alloys and Compounds, 2019, 789, 792-799.	5.5	1
9	Spark Plasma Extrusion and the Thermal Barrier Concept. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2019, 50, 656-665.	2.1	7
10	Review: titanium–titanium boride composites. Journal of Materials Science, 2019, 54, 6753-6771.	3.7	67
11	Effect of Carbon Nanotube (CNT) Length on the Mechanical Milling of Ni-CNT Powders and Ni-CNT/Al Reactive Synthesis. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 6351-6358.	2.2	8
12	Electrically activated reactive synthesis (EARS) and electro-annealing of 3Ni–Al powder compacts. Journal of Materials Science, 2018, 53, 12512-12522.	3.7	3
13	Novel Ballistic Processing of Sn-0.7Cu Thick Films. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 46-50.	2.2	1
14	Processing, characterization, and properties of aluminum–carbon nanotube open-cell foams. Journal of Materials Science, 2017, 52, 3927-3935.	3.7	8
15	Combustion synthesis and the electric field: A review. International Journal of Self-Propagating High-Temperature Synthesis, 2017, 26, 199-209.	0.5	29
16	Novel Aluminum (Al)-Carbon Nanotube (CNT) Open-Cell Foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2574-2578.	2.2	9
17	Ultra-rapid processing of high-hardness tungsten–copper nanocomposites. Scripta Materialia, 2016, 113, 246-249	5.2	31
18	Long-term post-processing disintegration of aluminum–carbon nanotube composites. Journal of Materials Science. 2016. 51. 2049-2056.	3.7	6

KHALED MORSI

#	Article	IF	CITATIONS
19	Effect of mechanical and electrical activation on the combustion synthesis of Al3Ti. Journal of Materials Science, 2014, 49, 5271-5278.	3.7	6
20	Reactive Current-Activated Tip-Based Sintering of Ni–Al Intermetallics. Metallography, Microstructure, and Analysis, 2013, 2, 148-155.	1.0	3
21	Rapid processing & characterization of micro-scale functionally graded porous materials. Journal of Materials Processing Technology, 2013, 213, 1251-1257.	6.3	7
22	Viability of Titanium-Titanium Boride Composite as a Biomaterial. ISRN Biomaterials, 2013, 2013, 1-8.	0.7	19
23	Green Compact Temperature Evolution during Current-Activated Tip-Based Sintering (CATS) of Nickel. Metals, 2013, 3, 178-187.	2.3	5
24	Effect of mechanical alloying on the microstructure and properties of Al–Sn–Mg alloy. Journal of Alloys and Compounds, 2012, 540, 100-106.	5.5	20
25	The diversity of combustion synthesis processing: a review. Journal of Materials Science, 2012, 47, 68-92.	3.7	129
26	The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Composites Part A: Applied Science and Manufacturing, 2011, 42, 234-243.	7.6	215
27	Effects of current intensity and cumulative exposure time on the localized current-activated sintering of titanium nickelides. Journal of Materials Science, 2011, 46, 6690-6699.	3.7	7
28	Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Composites Science and Technology, 2010, 70, 2237-2241.	7.8	504
29	Properties of single and dual matrix aluminum–carbon nanotube composites processed via spark plasma extrusion (SPE). Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 5686-5690.	5.6	61
30	Spark plasma extrusion (SPE) of ball-milled aluminum and carbon nanotube reinforced aluminum composite powders. Composites Part A: Applied Science and Manufacturing, 2010, 41, 322-326.	7.6	100
31	Characterization and Spark Plasma Sintering of Mechanically Milled Aluminum-Carbon Nanotube (CNT) Composite Powders. Journal of Composite Materials, 2010, 44, 1991-2003.	2.4	37
32	Novel current-activated tip-based sintering (CATS): Localization of spark plasma sintering. Scripta Materialia, 2009, 60, 745-748.	5.2	13
33	Spark plasma extrusion (SPE): Prospects and potential. Scripta Materialia, 2009, 61, 395-398.	5.2	27
34	Fabrication and properties of dispersed carbon nanotube–aluminum composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 508, 167-173.	5.6	376
35	Pressure-less and current-activated pressure-assisted sintering of titanium dual matrix composites: Effect of reinforcement particle size. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 507, 161-166.	5.6	46
36	Current-activated pressure-assisted sintering (CAPAS) and nanoindentation mapping of dual matrix composites. Journal of Materials Science, 2008, 43, 4050-4056.	3.7	15

KHALED MORSI

#	Article	IF	CITATIONS
37	Processing of titanium–titanium boride dual matrix composites. Journal of Materials Processing Technology, 2008, 196, 236-242.	6.3	45
38	Combustion synthesis of microstructurally designed green powder compacts. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 478, 208-213.	5.6	10
39	Pressure un-assisted reactive powder processing of high-density aluminide composites. Journal of Alloys and Compounds, 2008, 452, 367-372.	5.5	5
40	Piezoelectric Actuator-Based Nanoindentation. International Journal of Optomechatronics, 2007, 1, 103-121.	6.6	3
41	Dispersion of carbon nanotubes (CNTs) in aluminum powder. Composites Part A: Applied Science and Manufacturing, 2007, 38, 646-650.	7.6	384
42	Equal channel angular pressing followed by combustion synthesis of titanium aluminides. Journal of Alloys and Compounds, 2007, 429, L1-L4.	5.5	12
43	Reactive pressing of intermetallics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 454-455, 641-647.	5.6	9
44	Effect of mechanical alloying time and carbon nanotube (CNT) content on the evolution of aluminum (Al)–CNT composite powders. Journal of Materials Science, 2007, 42, 4954-4959.	3.7	154
45	Processing and properties of titanium–titanium boride (TiBw) matrix composites—a review. Journal of Materials Science, 2007, 42, 2037-2047.	3.7	245
46	High-temperature oxidation of reactively processed nickel aluminide intermetallics. Journal of Alloys and Compounds, 2006, 426, 136-143.	5.5	14
47	Effect of nickel particle size on the compaction behavior of rotator mixed and mechanically alloyed nickel and aluminum powders. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 426, 283-288.	5.6	5
48	Reactive extrusion and high-temperature oxidation of Ni3Al. Journal of Materials Science, 2006, 41, 1265-1268.	3.7	6
49	Self-propagating high-temperature synthesis (SHS) of rotator mixed and mechanically alloyed Ni/Al powder compacts. Journal of Materials Science, 2006, 41, 5699-5703.	3.7	22
50	Simultaneous combustion synthesis (thermal explosion mode) and extrusion of nickel aluminides. Journal of Materials Science, 2005, 40, 1027-1030.	3.7	20
51	Combustion forging of FeAl (40 at.% Al). Journal of Materials Science, 2004, 39, 4849-4854.	3.7	10
52	Processing of grain-size functionally gradient bioceramics for implant applications. Journal of Materials Science: Materials in Medicine, 2004, 15, 191-197.	3.6	9
53	Hot pressing of graded ultrafine-grained alumina bioceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 384-389.	5.6	16
54	Hot pressing of graded ultrafine-grained alumina bioceramics. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 386, 384-389.	5.6	10

KHALED MORSI

#	Article	IF	CITATIONS
55	Reactive Thermomechanical Processing of Intermetallic Materials. Journal of Materials Engineering and Performance, 2003, 12, 147-156.	2.5	10
56	Low-energy forging of aluminide intermetallics. Scripta Materialia, 2003, 48, 707-712.	5.2	15
57	Reactive sintering of boron-doped Ni76Al24 intermetallic. Journal of Materials Science, 2002, 37, 2005-2009.	3.7	6
58	Review: reaction synthesis processing of Ni–Al intermetallic materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 299, 1-15.	5.6	366
59	Processing defects in hot extrusion reaction synthesis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 290, 39-45.	5.6	11
60	Effect of specimen size on the composition of hot extrusion reaction synthesized NiAl. Journal of Materials Science Letters, 2000, 19, 331-332.	0.5	5
61	Effect of particle size and volume fraction on hot extrusion reaction synthesis of SiC particle reinforced NiAl. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2000, 31, 1663-1670.	2.2	13
62	Preliminary evaluation of hot extrusion miniaturization. Journal of Materials Science, 1999, 34, 2801-2806.	3.7	6
63	Control of heat generation during reaction synthesis. Scripta Materialia, 1999, 40, 359-364.	5.2	29
64	Limitations Due to High Extrusion Temperatures in Hot Extrusion Reaction Synthesis of Ni3Al. Journal of Materials Science Letters, 1998, 17, 1621-1622.	0.5	6
65	Formation of Ni3Al and NiAl by hot extrusion reaction synthesis (HERS). Scripta Materialia, 1997, 37, 1839-1842.	5.2	15