Rui Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795203/publications.pdf

Version: 2024-02-01

236925 315739 4,185 36 25 38 citations h-index g-index papers 39 39 39 7800 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Metals, 2022, 41, 2055-2062.	7.1	27
2	Trimetallic Zeolitic imidazolite framework-derived Co nanoparticles@CoFe-nitrogen-doped porous carbon as bifunctional electrocatalysts for Zn-air battery. Journal of Colloid and Interface Science, 2021, 586, 621-629.	9.4	29
3	Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chemical Communications, 2021, 57, 7810-7813.	4.1	26
4	Spatiotemporally super-resolved dendrites nucleation and early-stage growth dynamics in Zinc-ion batteries. Cell Reports Physical Science, 2021, 2, 100420.	5 . 6	19
5	Dextran Sulfate Lithium as Versatile Binder to Stabilize Highâ€Voltage LiCoO ₂ to 4.6 V. Advanced Energy Materials, 2021, 11, 2101864.	19.5	80
6	Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539.	16.0	19
7	Imaging Single Nanobubbles of H ₂ and O ₂ During the Overall Water Electrolysis with Single-Molecule Fluorescence Microscopy. Analytical Chemistry, 2020, 92, 3682-3688.	6.5	36
8	Single-Molecule Fluorescence Microscopy for Probing the Electrochemical Interface. ACS Omega, 2020, 5, 89-97.	3. 5	37
9	Observing Transient Bipolar Electrochemical Coupling on Single Nanoparticles Translocating through a Nanopore. Langmuir, 2019, 35, 7180-7190.	3.5	20
10	Transient Electrocatalytic Water Oxidation in Single-Nanoparticle Collision. Journal of Physical Chemistry C, 2018, 122, 6447-6455.	3.1	17
11	Counting Single Redox Molecules in a Nanoscale Electrochemical Cell. Analytical Chemistry, 2018, 90, 13837-13841.	6.5	29
12	Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5878-5883.	7.1	108
13	Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Analytical Chemistry, 2018, 90, 10049-10055.	6. 5	51
14	Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode. Journal of Physical Chemistry C, 2017, 121, 23564-23573.	3.1	29
15	Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Journal of the American Chemical Society, 2017, 139, 12274-12282.	13.7	89
16	Bipolar Electrochemistry on a Nanopore-Supported Platinum Nanoparticle Electrode. Analytical Chemistry, 2017, 89, 12652-12658.	6.5	24
17	Observing Electrochemical Dealloying by Single-Nanoparticle Collision. Analytical Chemistry, 2016, 88, 8728-8734.	6. 5	18
18	Electrochemical Detection of Nanoparticle Collision by Reduction of Silver Chloride. Journal of the Electrochemical Society, 2016, 163, H3145-H3151.	2.9	15

#	Article	lF	Citations
19	Nanopipette-Based Electroplated Nanoelectrodes. Analytical Chemistry, 2016, 88, 614-620.	6.5	29
20	Highâ€Performance, Stretchable, Wireâ€Shaped Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 618-622.	13.8	173
21	Janus ultrathin film from multi-level self-assembly at air–water interfaces. Chemical Communications, 2014, 50, 14843-14846.	4.1	45
22	Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale, 2013, 5, 11954.	5.6	45
23	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2013, 2, 88-97.	16.0	426
24	Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. Journal of Materials Chemistry A, 2013, 1, 6888.	10.3	96
25	PEG/lecithin–liquid-crystalline composite hydrogels for quasi-zero-order combined release of hydrophilic and lipophilic drugs. RSC Advances, 2013, 3, 22927.	3.6	19
26	Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon, 2013, 52, 595-604.	10.3	117
27	Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale, 2012, 4, 7326.	5. 6	189
28	Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Research, 2012, 5, 679-694.	10.4	49
29	One-pot synthesis of hollow/porous Mn-based nanoparticles via a controlled ion transfer process. Chemical Communications, 2011, 47, 9095.	4.1	13
30	Facile Preparation of Nitrogen-Doped Few-Layer Graphene via Supercritical Reaction. ACS Applied Materials & Samp; Interfaces, 2011, 3, 2259-2264.	8.0	75
31	Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011, 3, 2118.	5.6	265
32	Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 2010, 22, 2729-2742.	21.0	1,260
33	One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46, 3920.	4.1	140
34	Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research, 2009, 2, 706-712.	10.4	224
35	Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications, 2008, , 6576.	4.1	272
36	Fabrication and Sensing Behavior of Cr2O3Nanofibers via In situ Gelation and Electrospinning. Chemistry Letters, 2006, 35, 1248-1249.	1.3	40