Rui Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/795203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis, Functionalization, and Biomedical Applications of Multifunctional Magnetic Nanoparticles. Advanced Materials, 2010, 22, 2729-2742.	21.0	1,260
2	Synthesis of amino-functionalized graphene as metal-free catalyst and exploration of the roles of various nitrogen states in oxygen reduction reaction. Nano Energy, 2013, 2, 88-97.	16.0	426
3	Aqueous dispersions of TCNQ-anion-stabilized graphene sheets. Chemical Communications, 2008, , 6576.	4.1	272
4	Liquid-phase exfoliation, functionalization and applications of graphene. Nanoscale, 2011, 3, 2118.	5.6	265
5	Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research, 2009, 2, 706-712.	10.4	224
6	Iron phthalocyanine and nitrogen-doped graphene composite as a novel non-precious catalyst for the oxygen reduction reaction. Nanoscale, 2012, 4, 7326.	5.6	189
7	Highâ€Performance, Stretchable, Wireâ€Shaped Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 618-622.	13.8	173
8	One-pot synthesis of Fe3O4 nanoprisms with controlled electrochemical properties. Chemical Communications, 2010, 46, 3920.	4.1	140
9	Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon, 2013, 52, 595-604.	10.3	117
10	Imaging nanobubble nucleation and hydrogen spillover during electrocatalytic water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5878-5883.	7.1	108
11	Single-crystalline α-Fe2O3 nanostructures: controlled synthesis and high-index plane-enhanced photodegradation by visible light. Journal of Materials Chemistry A, 2013, 1, 6888.	10.3	96
12	Imaging Dynamic Collision and Oxidation of Single Silver Nanoparticles at the Electrode/Solution Interface. Journal of the American Chemical Society, 2017, 139, 12274-12282.	13.7	89
13	Dextran Sulfate Lithium as Versatile Binder to Stabilize Highâ€Voltage LiCoO ₂ to 4.6 V. Advanced Energy Materials, 2021, 11, 2101864.	19.5	80
14	Facile Preparation of Nitrogen-Doped Few-Layer Graphene via Supercritical Reaction. ACS Applied Materials & Interfaces, 2011, 3, 2259-2264.	8.0	75
15	Electrodeposited Gold on Carbon-Fiber Microelectrodes for Enhancing Amperometric Detection of Dopamine Release from Pheochromocytoma Cells. Analytical Chemistry, 2018, 90, 10049-10055.	6.5	51
16	Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Research, 2012, 5, 679-694.	10.4	49
17	Developing Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale, 2013, 5, 11954.	5.6	45
18	Janus ultrathin film from multi-level self-assembly at air–water interfaces. Chemical Communications, 2014, 50, 14843-14846.	4.1	45

Rui Hao

#	Article	IF	CITATIONS
19	Fabrication and Sensing Behavior of Cr2O3Nanofibers via In situ Gelation and Electrospinning. Chemistry Letters, 2006, 35, 1248-1249.	1.3	40
20	Single-Molecule Fluorescence Microscopy for Probing the Electrochemical Interface. ACS Omega, 2020, 5, 89-97.	3.5	37
21	Imaging Single Nanobubbles of H ₂ and O ₂ During the Overall Water Electrolysis with Single-Molecule Fluorescence Microscopy. Analytical Chemistry, 2020, 92, 3682-3688.	6.5	36
22	Nanopipette-Based Electroplated Nanoelectrodes. Analytical Chemistry, 2016, 88, 614-620.	6.5	29
23	Collision and Oxidation of Silver Nanoparticles on a Gold Nanoband Electrode. Journal of Physical Chemistry C, 2017, 121, 23564-23573.	3.1	29
24	Counting Single Redox Molecules in a Nanoscale Electrochemical Cell. Analytical Chemistry, 2018, 90, 13837-13841.	6.5	29
25	Trimetallic Zeolitic imidazolite framework-derived Co nanoparticles@CoFe-nitrogen-doped porous carbon as bifunctional electrocatalysts for Zn-air battery. Journal of Colloid and Interface Science, 2021, 586, 621-629.	9.4	29
26	Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Metals, 2022, 41, 2055-2062.	7.1	27
27	Redox of naphthalenediimide radicals in a 3D polyimide for stable Li-ion batteries. Chemical Communications, 2021, 57, 7810-7813.	4.1	26
28	Bipolar Electrochemistry on a Nanopore-Supported Platinum Nanoparticle Electrode. Analytical Chemistry, 2017, 89, 12652-12658.	6.5	24
29	Observing Transient Bipolar Electrochemical Coupling on Single Nanoparticles Translocating through a Nanopore. Langmuir, 2019, 35, 7180-7190.	3.5	20
30	PEG/lecithin–liquid-crystalline composite hydrogels for quasi-zero-order combined release of hydrophilic and lipophilic drugs. RSC Advances, 2013, 3, 22927.	3.6	19
31	Spatiotemporally super-resolved dendrites nucleation and early-stage growth dynamics in Zinc-ion batteries. Cell Reports Physical Science, 2021, 2, 100420.	5.6	19
32	Optical imaging of nanoscale electrochemical interfaces in energy applications. Nano Energy, 2021, 90, 106539.	16.0	19
33	Observing Electrochemical Dealloying by Single-Nanoparticle Collision. Analytical Chemistry, 2016, 88, 8728-8734.	6.5	18
34	Transient Electrocatalytic Water Oxidation in Single-Nanoparticle Collision. Journal of Physical Chemistry C, 2018, 122, 6447-6455.	3.1	17
35	Electrochemical Detection of Nanoparticle Collision by Reduction of Silver Chloride. Journal of the Electrochemical Society, 2016, 163, H3145-H3151.	2.9	15
36	One-pot synthesis of hollow/porous Mn-based nanoparticles via a controlled ion transfer process. Chemical Communications, 2011, 47, 9095.	4.1	13