Samantha B Joye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7952026/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Forecasting the effects of accelerated seaâ€level rise on tidal marsh ecosystem services. Frontiers in Ecology and the Environment, 2009, 7, 73-78.	4.0	614
2	The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chemical Geology, 2004, 205, 219-238.	3.3	466
3	Influence of Sulfide Inhibition of Nitrification on Nitrogen Regeneration in Sediments. Science, 1995, 270, 623-625.	12.6	384
4	Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria. Nature, 2007, 449, 898-901.	27.8	349
5	Biocomplexity in Mangrove Ecosystems. Annual Review of Marine Science, 2010, 2, 395-417.	11.6	328
6	Bacterial Taxa That Limit Sulfur Flux from the Ocean. Science, 2006, 314, 649-652.	12.6	296
7	Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14900-14905.	7.1	276
8	Oil Impacts on Coastal Wetlands: Implications for the Mississippi River Delta Ecosystem after the Deepwater Horizon Oil Spill. BioScience, 2012, 62, 562-574.	4.9	257
9	Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nature Reviews Microbiology, 2015, 13, 388-396.	28.6	247
10	Characterization of subsurface polycyclic aromatic hydrocarbons at the Deepwater Horizon site. Geophysical Research Letters, 2010, 37, .	4.0	217
11	High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature Communications, 2015, 6, 7477.	12.8	216
12	Magnitude and oxidation potential of hydrocarbon gases released from the BP oil well blowout. Nature Geoscience, 2011, 4, 160-164.	12.9	214
13	Ramifications of increased salinity in tidal freshwater sediments: Geochemistry and microbial pathways of organic matter mineralization. Journal of Geophysical Research, 2006, 111, .	3.3	210
14	Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities, Gulf of Mexico continental slope. Organic Geochemistry, 1999, 30, 485-497.	1.8	204
15	Molecular biogeochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochimica Et Cosmochimica Acta, 2005, 69, 4267-4281.	3.9	204
16	Estimates of flushing times, submarine groundwater discharge, and nutrient fluxes to Okatee Estuary, South Carolina. Journal of Geophysical Research, 2006, 111, .	3.3	201
17	Using Natural Abundance Radiocarbon To Trace the Flux of Petrocarbon to the Seafloor Following the Deepwater Horizon Oil Spill. Environmental Science & amp; Technology, 2015, 49, 847-854.	10.0	199
18	Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 2007, 445, 198-201.	27.8	195

#	Article	lF	CITATIONS
19	Deepwater Horizon, 5 years on. Science, 2015, 349, 592-593.	12.6	185
20	Enhancement of coupled nitrificationâ€denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography, 2001, 46, 62-74.	3.1	182
21	Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME Journal, 2013, 7, 2315-2329.	9.8	172
22	Impact of natural oil and higher hydrocarbons on microbial diversity, distribution, and activity in Gulf of Mexico cold-seep sediments. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 2008-2021.	1.4	171
23	Effect of salinity and inorganic nitrogen concentrations on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal. Water Research, 2005, 39, 1783-1794.	11.3	169
24	Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochimica Et Cosmochimica Acta, 2013, 115, 15-30.	3.9	167
25	Diverse, rare microbial taxa responded to the <i>Deepwater Horizon</i> deep-sea hydrocarbon plume. ISME Journal, 2016, 10, 400-415.	9.8	156
26	Anaerobic oxidation of ethane by archaea from a marine hydrocarbon seep. Nature, 2019, 568, 108-111.	27.8	149
27	Abiotic nitrous oxide emission from the hypersaline Don Juan Pond in Antarctica. Nature Geoscience, 2010, 3, 341-344.	12.9	146
28	Microbial Dynamics Following the Macondo Oil Well Blowout across Gulf of Mexico Environments. BioScience, 2014, 64, 766-777.	4.9	142
29	The rise and fall of methanotrophy following a deepwater oil-well blowout. Nature Geoscience, 2014, 7, 423-427.	12.9	121
30	Arsenic speciation in Mono Lake, California: Response to seasonal stratification and anoxia. Geochimica Et Cosmochimica Acta, 2005, 69, 1925-1937.	3.9	118
31	The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140451.	3.4	117
32	Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 2040-2054.	1.4	114
33	Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geoscience, 2009, 2, 349-354.	12.9	111
34	Pulsed blooms and persistent oil-degrading bacterial populations in the water column during and after the Deepwater Horizon blowout. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 282-291.	1.4	111
35	Oxidation of ammonia and methane in an alkaline, saline lake. Limnology and Oceanography, 1999, 44, 178-188.	3.1	110
36	Aerobic methane oxidation and methanotroph community composition during seasonal stratification in Mono Lake, California (USA). Environmental Microbiology, 2005, 7, 1127-1138.	3.8	103

#	Article	IF	CITATIONS
37	Bacterial methane oxidation in sea-floor gas hydrate: Significance to life in extreme environments. Geology, 1998, 26, 851.	4.4	102
38	The Gulf of Mexico ecosystem, six years after the Macondo oil well blowout. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 4-19.	1.4	99
39	Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 17036-17040.	7.1	98
40	Anaerobic methane oxidation in metalliferous hydrothermal sediments: influence on carbon flux and decoupling from sulfate reduction. Environmental Microbiology, 2012, 14, 2726-2740.	3.8	98
41	Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1990-2001.	1.4	93
42	Nitrogen cycling in microbial mats: rates and patterns of denitrification and nitrogen fixation. Marine Biology, 1994, 119, 285-295.	1.5	91
43	Analysis of Ammonia-Oxidizing Bacteria from Hypersaline Mono Lake, California, on the Basis of 16S rRNA Sequences. Applied and Environmental Microbiology, 2000, 66, 2873-2881.	3.1	90
44	A Tale of Two Spills: Novel Science and Policy Implications of an Emerging New Oil Spill Model. BioScience, 2012, 62, 461-469.	4.9	89
45	Molecular Analysis of the Sulfate Reducing and ArchaealCommunity in a Meromictic Soda Lake (Mono) Tj ETQq1	1 0.78431	4 rgBT /Ove
46	Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex situ incubation. Geochimica Et Cosmochimica Acta, 2011, 75, 500-519.	3.9	81
47	Invisible oil beyond the <i>Deepwater Horizon</i> satellite footprint. Science Advances, 2020, 6, eaaw8863.	10.3	81
48	Porewater Stoichiometry of Terminal Metabolic Products, Sulfate, and Dissolved Organic Carbon and Nitrogen in Estuarine Intertidal Creek-bank Sediments. Biogeochemistry, 2006, 77, 375-408.	3.5	77
49	Distributions of putative aerobic methanotrophs in diverse pelagic marine environments. ISME Journal, 2010, 4, 700-710.	9.8	77
50	The sulfur biogeochemistry of chemosynthetic cold seep communities, gulf of Mexico, USA. Marine Chemistry, 2004, 87, 97-119.	2.3	75
51	Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences, 2005, 2, 295-309.	3.3	75
52	Groundwater controls ecological zonation of salt marsh macrophytes. Ecology, 2015, 96, 840-849.	3.2	73
53	Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochimica Et Cosmochimica Acta, 2016, 187, 1-20.	3.9	73
54	Thermal evidence of water exchange through a coastal aquifer: Implications for nutrient fluxes. Geophysical Research Letters, 2002, 29, 49-1-49-4.	4.0	72

#	Article	IF	CITATIONS
55	Benthic metabolism and the fate of dissolved inorganic nitrogen in intertidal sediments. Estuarine, Coastal and Shelf Science, 2009, 83, 392-402.	2.1	72
56	Seasonal patterns of nitrogen fixation and denitrification in oceanic mangrove habitats. Marine Ecology - Progress Series, 2006, 307, 127-141.	1.9	72
57	Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochimica Et Cosmochimica Acta, 2018, 224, 171-186.	3.9	71
58	Microbial Community Response to Seawater Amendment in Low-Salinity Tidal Sediments. Microbial Ecology, 2009, 58, 558-568.	2.8	70
59	Dynamics of submarine groundwater discharge and associated fluxes of dissolved nutrients, carbon, and trace gases to the coastal zone (Okatee River estuary, South Carolina). Geochimica Et Cosmochimica Acta, 2014, 131, 81-97.	3.9	67
60	Porewater biogeochemistry and soil metabolism in dwarf red mangrove habitats (Twin Cays, Belize). Biogeochemistry, 2008, 87, 181-198.	3.5	66
61	On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environmental Microbiology, 2008, 10, 1108-1117.	3.8	66
62	Analysis of Methane Monooxygenase Genes in Mono Lake Suggests That Increased Methane Oxidation Activity May Correlate with a Change in Methanotroph Community Structure. Applied and Environmental Microbiology, 2005, 71, 6458-6462.	3.1	65
63	Tracing the slow growth of anaerobic methane-oxidizing communities by 15N-labelling techniques. FEMS Microbiology Ecology, 2008, 63, 401-411.	2.7	64
64	The Geology and Biogeochemistry of Hydrocarbon Seeps. Annual Review of Earth and Planetary Sciences, 2020, 48, 205-231.	11.0	64
65	Nitrification in Mono Lake, California: Activity and community composition during contrasting hydrological regimes. Limnology and Oceanography, 2008, 53, 2546-2557.	3.1	62
66	Chemotrophic Microbial Mats and Their Potential for Preservation in the Rock Record. Astrobiology, 2009, 9, 843-859.	3.0	60
67	New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 2022-2029.	1.4	60
68	Spatial distribution of nitrogen fixation in methane seep sediment and the role of the <scp>ANME</scp> archaea. Environmental Microbiology, 2014, 16, 3012-3029.	3.8	60
69	Responses of Microbial Communities to Hydrocarbon Exposures. Oceanography, 2016, 29, 136-149.	1.0	59
70	Estimating denitrification rates in estuarine sediments: A comparison of stoichiometric and acetylene based methods. Biogeochemistry, 1996, 33, 197-215.	3.5	57
71	Life at the edge of methane ice: microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates. Chemical Geology, 2004, 205, 239-251.	3.3	56
72	Time integrated variation of sources of fluids and seepage dynamics archived in authigenic carbonates from Gulf of Mexico Gas Hydrate Seafloor Observatory. Chemical Geology, 2014, 385, 129-139.	3.3	56

#	Article	IF	CITATIONS
73	Horizontal acquisition of a patchwork Calvin cycle by symbiotic and free-living Campylobacterota (formerly Epsilonproteobacteria). ISME Journal, 2020, 14, 104-122.	9.8	55
74	Diel Rates of N2-fixation and Denitrification in a TransplantedSpartina alternifloraMarsh: Implications for N-flux Dynamics. Estuarine, Coastal and Shelf Science, 1996, 42, 597-616.	2.1	53
75	Stormâ€driven groundwater flow in a salt marsh. Water Resources Research, 2011, 47, .	4.2	52
76	Distinct Bacterial Communities in Surficial Seafloor Sediments Following the 2010 Deepwater Horizon Blowout. Frontiers in Microbiology, 2016, 7, 1384.	3.5	52
77	Extensive carbon isotopic heterogeneity among methane seep microbiota. Environmental Microbiology, 2009, 11, 2207-2215.	3.8	51
78	Contemporaneous nitrogen fixation and denitrification in intertidal microbial mats: rapid response to runoff events. Marine Ecology - Progress Series, 1993, 94, 267-274.	1.9	49
79	Undressing and redressing Ediacaran embryos (Reply). Nature, 2007, 446, E10-E11.	27.8	47
80	What time scales are important for monitoring tidally influenced submarine groundwater discharge? Insights from a salt marsh. Water Resources Research, 2015, 51, 4198-4207.	4.2	47
81	Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environmental Microbiology, 2005, 7, 1451-1460.	3.8	46
82	Saltwater Intrusion and Submarine Groundwater Discharge: Acceleration of Biogeochemical Reactions in Changing Coastal Aquifers. Frontiers in Earth Science, 2021, 9, .	1.8	46
83	Anaerobic oxidation of short-chain alkanes in hydrothermal sediments: potential influences on sulfur cycling and microbial diversity. Frontiers in Microbiology, 2013, 4, 110.	3.5	44
84	Biogeochemical and 16S rRNA gene sequence evidence supports a novel mode of anaerobic methanotrophy in permanently iceâ€covered Lake Fryxell, Antarctica. Limnology and Oceanography, 2016, 61, S119.	3.1	44
85	Anaerobic oxidation of methane by sulfate in hypersaline groundwater of the Dead Sea aquifer. Geobiology, 2014, 12, 511-528.	2.4	43
86	Biodegradation of crude oil and dispersants in deep seawater from the Gulf of Mexico: Insights from ultra-high resolution mass spectrometry. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 108-118.	1.4	42
87	Degradation of algal lipids in microcosm sediments with different mixing regimes. Organic Geochemistry, 2002, 33, 445-459.	1.8	41
88	Nitrogen Cycling in Coastal Sediments. , 2008, , 867-915.		40
89	Microbial enzymatic activity and secondary production in sediments affected by the sedimentation pulse following the Deepwater Horizon oil spill. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 241-248.	1.4	39
90	Potential rates and environmental controls of anaerobic ammonium oxidation in estuarine sediments. Aquatic Microbial Ecology, 2012, 66, 23-32.	1.8	38

#	Article	IF	CITATIONS
91	Denitrification and environmental factors influencing nitrate removal in Guaymas Basin hydrothermally altered sediments. Frontiers in Microbiology, 2012, 3, 377.	3.5	38
92	Thriving in Salt. Science, 2009, 324, 1523-1525.	12.6	37
93	The Diverse Bacterial Community in Intertidal, Anaerobic Sediments at Sapelo Island, Georgia. Microbial Ecology, 2009, 58, 244-261.	2.8	37
94	Analyses of Water Samples From the Deepwater Horizon Oil Spill: Documentation of the Subsurface Plume. Geophysical Monograph Series, 2011, , 77-82.	0.1	37
95	A piece of the methane puzzle. Nature, 2012, 491, 538-539.	27.8	36
96	Barite encrustation of benthic sulfurâ€oxidizing bacteria at a marine cold seep. Geobiology, 2015, 13, 588-603.	2.4	36
97	Benthic microbial mats: important sources of fixed nitrogen and carbon to the Twin Cays, Belize ecosystem. Atoll Research Bulletin, 2004, 528, 1-24.	0.2	36
98	Improved measurement of microbial activity in deepâ€sea sediments at in situ pressure and methane concentration. Limnology and Oceanography: Methods, 2011, 9, 499-506.	2.0	35
99	The metabolic pathways and environmental controls of hydrocarbon biodegradation in marine ecosystems. Frontiers in Microbiology, 2014, 5, 471.	3.5	35
100	Stable isotope analyses of NO2â^', NO3â^', and N2O in the hypersaline ponds and soils of the McMurdo Dry Valleys, Antarctica. Geochimica Et Cosmochimica Acta, 2014, 135, 87-101.	3.9	35
101	Fatty acid carbon isotope signatures in chemosynthetic mussels and tube worms from gulf of Mexico hydrocarbon seep communities. Chemical Geology, 2002, 185, 1-8.	3.3	34
102	Population growth away from the coastal zone: Thirty years of land use change and nutrient export in the Altamaha River, GA. Science of the Total Environment, 2009, 407, 3347-3356.	8.0	34
103	AlvinExplores the Deep Northern Gulf of Mexico Slope. Eos, 2007, 88, 341.	0.1	33
104	Nutrient-Replete Benthic Microalgae as a Source of Dissolved Organic Carbon to Coastal Waters. Estuaries and Coasts, 2008, 31, 860-876.	2.2	33
105	Biogeochemistry, microbial activity, and diversity in surface and subsurface deepâ€sea sediments of South China Sea. Limnology and Oceanography, 2019, 64, 2252-2270.	3.1	33
106	Evaluation of nutrient limitation of CO2 and N2 fixation in marine microbial mats. Marine Ecology - Progress Series, 1993, 101, 297-306.	1.9	33
107	Role of Salt Marshes as Part of Coastal Landscapes. , 2002, , 23-36.		32
108	Inorganic nitrogen dynamics in intertidal rocky biofilms and sediments of the Douro River estuary (Portugal). Estuaries and Coasts, 2005, 28, 592-607.	1.7	30

#	Article	IF	CITATIONS
109	Significance of Acetate as a Microbial Carbon and Energy Source in the Water Column of Gulf of Mexico: Implications for Marine Carbon Cycling. Global Biogeochemical Cycles, 2019, 33, 223-235.	4.9	30
110	Geomicrobiological linkages between short-chain alkane consumption and sulfate reduction rates in seep sediments. Frontiers in Microbiology, 2013, 4, 386.	3.5	29
111	The impact of the Deepwater Horizon blowout on historic shipwreck-associated sediment microbiomes in the northern Gulf of Mexico. Scientific Reports, 2018, 8, 9057.	3.3	29
112	High rates of denitrification and nitrate removal in cold seep sediments. ISME Journal, 2011, 5, 565-567.	9.8	28
113	Microbial Communities Under Distinct Thermal and Geochemical Regimes in Axial and Off-Axis Sediments of Guaymas Basin. Frontiers in Microbiology, 2021, 12, 633649.	3.5	28
114	The role of salinity in shaping dissolved inorganic nitrogen and N2O dynamics in estuarine sediment–water interface. Marine Pollution Bulletin, 2013, 66, 225-229.	5.0	26
115	Effects of pressure, methane concentration, sulfate reduction activity, and temperature on methane production in surface sediments of the Gulf of Mexico. Limnology and Oceanography, 2018, 63, 2080-2092.	3.1	26
116	Community Metabolism in Microbial Mats: The Occurrence of Biologically-mediated Iron and Manganese Reduction. Estuarine, Coastal and Shelf Science, 1996, 43, 747-766.	2.1	25
117	Formation of lowâ€magnesium calcite at cold seeps in an aragonite sea. Terra Nova, 2014, 26, 150-156.	2.1	25
118	Reply to Prince et al.: Ability of chemical dispersants to reduce oil spill impacts remains unclear. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1422-E1423.	7.1	25
119	Interactions between Methane Oxidation and Nitrification in Coastal Sediments. Geomicrobiology Journal, 2003, 20, 355-374.	2.0	24
120	Comment on "A Persistent Oxygen Anomaly Reveals the Fate of Spilled Methane in the Deep Gulf of Mexico― Science, 2011, 332, 1033-1033.	12.6	23
121	Intense nitrogen cycling in permeable intertidal sediment revealed by a nitrous oxide hot spot. Global Biogeochemical Cycles, 2015, 29, 1584-1598.	4.9	23
122	Hydrocarbon composition and concentrations in the Gulf of Mexico sediments in the 3 years following the Macondo well blowout. Environmental Pollution, 2017, 229, 329-338.	7.5	23
123	Bacterial Oxidation of Methyl Bromide in Mono Lake, California. Environmental Science & Technology, 1997, 31, 1489-1495.	10.0	22
124	Generation and Utilization of Volatile Fatty Acids and Alcohols in Hydrothermally Altered Sediments in the Guaymas Basin, Gulf of California. Geophysical Research Letters, 2019, 46, 2637-2646.	4.0	22
125	Differential effects of crude oil on denitrification and anammox, and the impact on N2O production. Environmental Pollution, 2016, 216, 391-399.	7.5	21
126	Response of anaerobic ammonium oxidation to inorganic nitrogen fluctuations in temperate estuarine sediments. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1829-1839.	3.0	21

#	Article	IF	CITATIONS
127	Methanotrophy controls groundwater methane export from a barrier island. Geochimica Et Cosmochimica Acta, 2016, 179, 242-256.	3.9	21
128	Methylâ€compounds driven benthic carbon cycling in the sulfateâ€reducing sediments of South China Sea. Environmental Microbiology, 2021, 23, 641-651.	3.8	21
129	A Halophilic Bacterium Inhabiting the Warm, CaCl ₂ -Rich Brine of the Perennially Ice-Covered Lake Vanda, McMurdo Dry Valleys, Antarctica. Applied and Environmental Microbiology, 2015, 81, 1988-1995.	3.1	20
130	BP Gulf Science Data Reveals Ineffectual Subsea Dispersant Injection for the Macondo Blowout. Frontiers in Marine Science, 2018, 5, .	2.5	20
131	A New Mechanism for Submarine Groundwater Discharge From Continental Shelves. Water Resources Research, 2020, 56, e2019WR026866.	4.2	19
132	An improved chromatographic method to measure nitrogen, oxygen, argon and methane in gas or liquid samples. Marine Chemistry, 1997, 59, 63-70.	2.3	18
133	The contribution of anaerobic ammonium oxidation to nitrogen loss in two temperate eutrophic estuaries. Estuarine, Coastal and Shelf Science, 2014, 143, 41-47.	2.1	18
134	Remarkable Capacity for Anaerobic Oxidation of Methane at High Methane Concentration. Geophysical Research Letters, 2019, 46, 12192-12201.	4.0	18
135	Groundwaterâ€Driven Methane Export Reduces Salt Marsh Blue Carbon Potential. Global Biogeochemical Cycles, 2020, 34, e2020GB006587.	4.9	18
136	Biogeochemical Dynamics of Coastal Tidal Flats. , 2019, , 407-440.		17
137	A Synthesis of Deep Benthic Faunal Impacts and Resilience Following the Deepwater Horizon Oil Spill. Frontiers in Marine Science, 2020, 7, .	2.5	17
138	Offshore oceanic impacts from the BP oil spill. Nature Geoscience, 2010, 3, 446-446.	12.9	16
139	Seasonal variations of methane fluxes from an unvegetated tidal freshwater mudflat (Hammersmith) Tj ETQq1 1	0.784314	\cdot rgBT /Over $_{16}^{\circ}$
140	Patterns and variability in geochemical signatures and microbial activity within and between diverse cold seep habitats along the lower continental slope, Northern Gulf of Mexico. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 31-40.	1.4	16
141	Deep oxygen penetration drives nitrification in intertidal beach sands. Limnology and Oceanography, 2018, 63, S193.	3.1	16
142	Heterotrophic metabolism of C1 and C2 low molecular weight compounds in northern Gulf of Mexico sediments: Controlling factors and implications for organic carbon degradation. Geochimica Et Cosmochimica Acta, 2019, 247, 243-260.	3.9	16
143	Transport, Fate and Impacts of the Deep Plume of Petroleum Hydrocarbons Formed During the Macondo Blowout. Frontiers in Marine Science, 2020, 7, .	2.5	16
144	Response and oil degradation activities of a northeast Atlantic bacterial community to biogenic and synthetic surfactants. Microbiome, 2021, 9, 191.	11.1	16

#	Article	IF	CITATIONS
145	Variation in Prokaryotic Community Composition as a Function of Resource Availability in Tidal Creek Sediments. Applied and Environmental Microbiology, 2008, 74, 1836-1844.	3.1	15
146	Drought impacts on biogeochemistry and microbial processes in salt marsh sediments: a flow-through reactor approach. Biogeochemistry, 2013, 112, 389-407.	3.5	15
147	How Clonal Is Clonal? Genome Plasticity across Multicellular Segments of a "Candidatus Marithrix sp.―Filament from Sulfidic, Briny Seafloor Sediments in the Gulf of Mexico. Frontiers in Microbiology, 2016, 7, 1173.	3.5	15
148	Microbial diversity and activity in seafloor brine lake sediments (Alaminos Canyon block 601, Gulf of) Tj ETQq0 0	0 rgBT /Ov 2:4	verlock 10 Tf
149	Microbial metabolism of methanol and methylamine in the Gulf of Mexico: insight into marine carbon and nitrogen cycling. Environmental Microbiology, 2018, 20, 4543-4554.	3.8	15
150	Hydrocarbon migration pathway and methane budget for a Gulf of Mexico natural seep site: Green Canyon 600. Earth and Planetary Science Letters, 2020, 545, 116411.	4.4	15
151	Analysis of fae and fhcD Genes in Mono Lake, California. Applied and Environmental Microbiology, 2005, 71, 8949-8953.	3.1	14
152	Microbial ecology and biogeochemistry of hypersaline sediments in Orca Basin. PLoS ONE, 2020, 15, e0231676.	2.5	14
153	Field measurements and modeling of groundwater flow and biogeochemistry at Moses Hammock, a backbarrier island on the Georgia coast. Biogeochemistry, 2011, 104, 69-90.	3.5	13
154	Nitrogen Fixation and Denitrification in the Intertidal and Subtidal Environments of Tomales Bay, California. , 1993, , 633-653.		13
155	Starvation-Dependent Inhibition of the Hydrocarbon Degrader Marinobacter sp. TT1 by a Chemical Dispersant. Journal of Marine Science and Engineering, 2020, 8, 925.	2.6	12
156	An inventory of potentially habitable environments on Mars: Geological and biological perspectives. , 2011, , .		11
157	SnapShot: Microbial Hydrocarbon Bioremediation. Cell, 2018, 172, 1336-1336.e1.	28.9	11
158	Vertical marine snow distribution in the stratified, hypersaline, and anoxic Orca Basin (Gulf of) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 222
159	On the utility of radium isotopes as tracers of hydrocarbon discharge. Marine Chemistry, 2013, 156, 98-107.	2.3	10
160	Biodegradation of Petroleum Hydrocarbons in theÂDeep Sea. , 2020, , 107-124.		10
161	Inter- and Intra-Annual Bacterioplankton Community Patterns in a Deepwater Sub-Arctic Region: Persistent High Background Abundance of Putative Oil Degraders. MBio, 2021, 12, .	4.1	10

162Long-term impact of the Deepwater Horizon oil well blowout on methane oxidation dynamics in the
northern Gulf of Mexico. Elementa, 2018, 6, .3.210

#	Article	IF	CITATIONS
163	Carbon isotopic evidence for microbial control of carbon supply to Orca Basin at the seawater–brine interface. Biogeosciences, 2013, 10, 3175-3183.	3.3	9
164	Selective quantification of DOSS in marine sediment and sediment-trap solids by LC-QTOF-MS. Analytical and Bioanalytical Chemistry, 2017, 409, 971-978.	3.7	9
165	Pelagic methane oxidation in the northern Chukchi Sea. Limnology and Oceanography, 2020, 65, 96-110.	3.1	8
166	Agents of change and temporal nutrient dynamics in the Altamaha River Watershed. Ecosphere, 2017, 8, e01519.	2.2	7
167	Vertical stratification and stability of biogeochemical processes in the deep saline waters of Lake Vanda, Antarctica. Limnology and Oceanography, 2020, 65, 569-581.	3.1	7
168	Sulfate reduction and methanogenesis in the hypersaline deep waters and sediments of a perennially iceâ€covered lake. Limnology and Oceanography, 2021, 66, 1804-1818.	3.1	7
169	Pelagic denitrification and methane oxidation in oxygen-depleted waters of the Louisiana shelf. Biogeochemistry, 2021, 154, 231-254.	3.5	6
170	The Open-Ocean Gulf of Mexico After Deepwater Horizon: Synthesis of a Decade of Research. Frontiers in Marine Science, 2022, 9, .	2.5	6
171	Hercules 265 rapid response: Immediate ecosystem impacts of a natural gas blowout incident. Deep-Sea Research Part II: Topical Studies in Oceanography, 2016, 129, 66-76.	1.4	5
172	Summary of carbon, nitrogen, and iron leaching characteristics and fluorescence properties of materials considered for subseafloor observatory assembly. Proceedings of the Integrated Ocean Drilling Program Integrated Ocean Drilling Program, 0, , .	1.0	5
173	Benthic primary production and nitrogen cycling in Spartina alterniflora marshes: effect of restoration after acute dieback. Biogeochemistry, 2014, 117, 511-524.	3.5	4
174	A Rapid Response Study of the Hercules Gas Well Blowout. Eos, 2014, 95, 341-342.	0.1	4
175	Food web complexity weakens size-based constraints on the pyramids of life. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20201500.	2.6	4
176	Patterns and Controls of Nutrient Concentrations in a Southeastern United States Tidal Creek. Oceanography, 2013, 26, 132-139.	1.0	4
177	Oxidation of organic and inorganic sulfur compounds by aerobic heterotrophic marine bacteria. Progress in Industrial Microbiology, 2002, 36, 291-310.	0.0	2
178	2. Hydrocarbon seep ecosystems. , 2017, , 33-52.		2
179	Polysaccharide hydrolysis in the presence of oil and dispersants: Insights into potential degradation pathways of exopolymeric substances (EPS) from oil-degrading bacteria. Elementa, 2019, 7, .	3.2	2
180	Abiotic Nitrous Oxide Production From Sediments and Brine of Don Juan Pond, Wright Valley Antarctica, at Mars Analog Temperatures (â^'40°C). Geophysical Research Letters, 2022, 49, .	4.0	2

#	Article	IF	CITATIONS
181	Protocols for Radiotracer Estimation of Primary Hydrocarbon Oxidation in Oxygenated Seawater. Springer Protocols, 2016, , 263-276.	0.3	1
182	Evaluating the Potential Importance of Groundwater-Derived Carbon, Nitrogen, and Phosphorus Inputs to South Carolina and Georgia Coastal Ecosystems. , 2006, , 139-178.		1
183	The Gulf of Mexico: An Introductory Survey of a Seep-Dominated Seafloor Landscape. Springer Oceanography, 2020, , 69-100.	0.3	1
184	Marine Biogeochemical Cycles. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 623-671.	0.6	1
185	Protocols for Radiotracer Estimation of Methane Oxidation Rates at In Situ Methane Concentrations in Marine Sediments. Springer Protocols, 2016, , 277-303.	0.3	0
186	Global Aerobic Degradation of Hydrocarbons in Aquatic Systems. , 2019, , 797-814.		0
187	Global Aerobic Degradation of Hydrocarbons in Aquatic Systems. , 2017, , 1-18.		0