Bernd Bufe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951835/publications.pdf Version: 2024-02-01

REDND RUEE

#	Article	IF	CITATIONS
1	Emerging contributions of formyl peptide receptors to neurodegenerative diseases. Biological Chemistry, 2022, 403, 27-41.	2.5	10
2	Chemosensory Cell-Derived Acetylcholine Drives Tracheal Mucociliary Clearance in Response to Virulence-Associated Formyl Peptides. Immunity, 2020, 52, 683-699.e11.	14.3	63
3	Trpc5 deficiency causes hypoprolactinemia and altered function of oscillatory dopamine neurons in the arcuate nucleus. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15236-15243.	7.1	22
4	Bacterial MgrB peptide activates chemoreceptor Fpr3 in mouse accessory olfactory system and drives avoidance behaviour. Nature Communications, 2019, 10, 4889.	12.8	30
5	A calcium optimum for cytotoxic T lymphocyte and natural killer cell cytotoxicity. Journal of Physiology, 2018, 596, 2681-2698.	2.9	64
6	Trpm5 expression in the olfactory epithelium. Molecular and Cellular Neurosciences, 2017, 80, 75-88.	2.2	17
7	Organization and Plasticity of Sodium Channel Expression in the Mouse Olfactory and Vomeronasal Epithelia. Frontiers in Neuroanatomy, 2017, 11, 28.	1.7	7
8	Strain-specific Loss of Formyl Peptide Receptor 3 in the Murine Vomeronasal and Immune Systems. Journal of Biological Chemistry, 2016, 291, 9762-9775.	3.4	38
9	The sensing of bacteria: emerging principles for the detection of signal sequences by formyl peptide receptors. Biomolecular Concepts, 2016, 7, 205-214.	2.2	30
10	Recognition of Bacterial Signal Peptides by Mammalian Formyl Peptide Receptors. Journal of Biological Chemistry, 2015, 290, 7369-7387.	3.4	85
11	A simple, economic, timeâ€resolved killing assay. European Journal of Immunology, 2014, 44, 1870-1872.	2.9	55
12	Formyl peptide receptors from the innate immune system and the vomeronasal organ recognize pathogen derived peptides. Journal of Neuroimmunology, 2014, 275, 91-92.	2.3	0
13	Mammalian-Specific OR37 Receptors Are Differentially Activated by Distinct Odorous Fatty Aldehydes. Chemical Senses, 2012, 37, 479-493.	2.0	33
14	Formyl Peptide Receptors from Immune and Vomeronasal System Exhibit Distinct Agonist Properties. Journal of Biological Chemistry, 2012, 287, 33644-33655.	3.4	51
15	Genomic, genetic and functional dissection of bitter taste responses to artificial sweeteners. Human Molecular Genetics, 2011, 20, 3437-3449.	2.9	94
16	Loss-of-function mutations in sodium channel Nav1.7 cause anosmia. Nature, 2011, 472, 186-190.	27.8	267
17	G protein Gαo is essential for vomeronasal function and aggressive behavior in mice. Proceedings of the United States of America, 2011, 108, 12898-12903.	7.1	159
18	Oligomerization of TAS2R Bitter Taste Receptors. Chemical Senses, 2010, 35, 395-406.	2.0	74

Bernd Bufe

#	Article	IF	CITATIONS
19	The Molecular Receptive Ranges of Human TAS2R Bitter Taste Receptors. Chemical Senses, 2010, 35, 157-170.	2.0	907
20	Saccharin: Artificial Sweetener, Bitter Tastant, and Sweet Taste Inhibitor. ACS Symposium Series, 2008, , 230-240.	0.5	6
21	The binding site for neohesperidin dihydrochalcone at the human sweet taste receptor. BMC Structural Biology, 2007, 7, 66.	2.3	116
22	Functional Variant in a Bitter-Taste Receptor (hTAS2R16) Influences Risk of Alcohol Dependence. American Journal of Human Genetics, 2006, 78, 103-111.	6.2	155
23	Taste Receptors and Their Variants. , 2006, , 386-411.		2
24	Structural properties of orexins for activation of their receptors. Journal of Peptide Science, 2006, 12, 258-266.	1.4	20
25	Independent evolution of bitter-taste sensitivity in humans and chimpanzees. Nature, 2006, 440, 930-934.	27.8	186
26	A TAS1R receptor-based explanation of sweet â€~water-taste'. Nature, 2006, 441, 354-357.	27.8	136
27	The Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception. Current Biology, 2005, 15, 322-327.	3.9	625
28	Positive Selection on a High-Sensitivity Allele of the Human Bitter-Taste Receptor TAS2R16. Current Biology, 2005, 15, 1257-1265.	3.9	224
29	Valine 738 and lysine 735 in the fifth transmembrane domain of rTas1r3 mediate insensitivity towards lactisole of the rat sweet taste receptor. BMC Neuroscience, 2005, 6, 22.	1.9	93
30	Human Bitter Taste Perception. Chemical Senses, 2005, 30, i14-i15.	2.0	42
31	Bitter Taste Receptors for Saccharin and Acesulfame K. Journal of Neuroscience, 2004, 24, 10260-10265.	3.6	315
32	The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochemical and Biophysical Research Communications, 2004, 319, 479-479.	2.1	0
33	The human taste receptor hTAS2R14 responds to a variety of different bitter compounds. Biochemical and Biophysical Research Communications, 2004, 319, 479-485.	2.1	200
34	Identification of Human Bitter Taste Receptors. ACS Symposium Series, 2003, , 45-59.	0.5	3
35	The human TAS2R16 receptor mediates bitter taste in response to β-glucopyranosides. Nature Genetics, 2002, 32, 397-401.	21.4	400
36	Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature, 2001, 413, 631-635.	27.8	213

#	Article	IF	CITATIONS
37	Characterization of thegltFgene product ofEscherichia coli. FEMS Microbiology Letters, 1999, 179, 79-84.	1.8	12