Anan Yaghmur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7951228/publications.pdf

Version: 2024-02-01

53794 85541 5,513 101 45 71 citations h-index g-index papers 107 107 107 4319 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Characterization and potential applications of nanostructured aqueous dispersions. Advances in Colloid and Interface Science, 2009, 147-148, 333-342.	14.7	324
2	Emulsified Microemulsions and Oil-Containing Liquid Crystalline Phases. Langmuir, 2005, 21, 569-577.	3.5	241
3	Reversible Phase Transitions in Emulsified Nanostructured Lipid Systems. Langmuir, 2004, 20, 5254-5261.	3.5	222
4	Improved Oil Solubilization in Oil/Water Food Grade Microemulsions in the Presence of Polyols and Ethanol. Journal of Agricultural and Food Chemistry, 2001, 49, 2552-2562.	5.2	213
5	Oil-Loaded Monolinolein-Based Particles with Confined Inverse Discontinuous Cubic Structure (Fd3m). Langmuir, 2006, 22, 517-521.	3.5	162
6	An integrated assessment of morphology, size, and complement activation of the PEGylated liposomal doxorubicin products Doxil®, Caelyx®, DOXOrubicin, and SinaDoxosome. Journal of Controlled Release, 2016, 221, 1-8.	9.9	152
7	Phase behavior of microemulsions based on food-grade nonionic surfactants: effect of polyols and short-chain alcohols. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209, 71-81.	4.7	147
8	Gold-embedded photosensitive liposomes for drug delivery: Triggering mechanism and intracellular release. Journal of Controlled Release, 2010, 147, 136-143.	9.9	140
9	Food-Grade Microemulsions Based on Nonionic Emulsifiers:Â Media To Enhance Lycopene Solubilization. Journal of Agricultural and Food Chemistry, 2002, 50, 6917-6922.	5.2	131
10	Cubosomes and hexosomes as versatile platforms for drug delivery. Therapeutic Delivery, 2015, 6, 1347-1364.	2.2	130
11	Control of the Internal Structure of MLO-Based Isasomes by the Addition of Diglycerol Monooleate and Soybean Phosphatidylcholine. Langmuir, 2006, 22, 9919-9927.	3.5	125
12	Crystallography of dispersed liquid crystalline phases studied by cryo-transmission electron microscopy. Journal of Microscopy, 2006, 221, 110-121.	1.8	117
13	Nanomedicines for cancer therapy: current status, challenges and future prospects. Therapeutic Delivery, 2019, 10, 113-132.	2.2	102
14	Tuning Curvature and Stability of Monoolein Bilayers by Designer Lipid-Like Peptide Surfactants. PLoS ONE, 2007, 2, e479.	2.5	101
15	Recent advances in drug delivery applications of cubosomes, hexosomes, and solid lipid nanoparticles. Acta Pharmaceutica Sinica B, 2021, 11, 871-885.	12.0	91
16	Role of <i>in vitro</i> release models in formulation development and quality control of parenteral depots. Expert Opinion on Drug Delivery, 2009, 6, 1283-1295.	5.0	80
17	A structurally diverse library of safe-by-design citrem-phospholipid lamellar and non-lamellar liquid crystalline nano-assemblies. Journal of Controlled Release, 2016, 239, 1-9.	9.9	76
18	The role of calcium in membrane condensation and spontaneous curvature variations in model lipidic systems. Physical Chemistry Chemical Physics, 2011, 13, 3115-3125.	2.8	75

#	Article	IF	Citations
19	Characterization of Bupivacaine-Loaded Formulations Based on Liquid Crystalline phases and Microemulsions: The Effect of Lipid Composition. Langmuir, 2012, 28, 2881-2889.	3.5	7 5
20	Formulation and characterization of food-grade microemulsions as carriers of natural phenolic antioxidants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 483, 130-136.	4.7	74
21	Microstructure Considerations of New Five-Component Winsor IV Food-Grade Microemulsions Studied by Pulsed Gradient Spinâ^'Echo NMR, Conductivity, and Viscosity. Langmuir, 2003, 19, 1063-1068.	3.5	73
22	Five-component food-grade microemulsions: structural characterization by SANS. Journal of Colloid and Interface Science, 2004, 274, 251-267.	9.4	71
23	SPECT/CT imaging of radiolabeled cubosomes and hexosomes forÂpotential theranostic applications. Biomaterials, 2013, 34, 8491-8503.	11.4	71
24	Self-Assembly in Monoelaidin Aqueous Dispersions: Direct Vesicles to Cubosomes Transition. PLoS ONE, 2008, 3, e3747.	2.5	71
25	Real-time UV imaging of drug diffusion and release from Pluronic F127 hydrogels. European Journal of Pharmaceutical Sciences, 2011, 43, 236-243.	4.0	70
26	Antimicrobial Peptide-Driven Colloidal Transformations in Liquid-Crystalline Nanocarriers. Journal of Physical Chemistry Letters, 2016, 7, 3482-3486.	4.6	69
27	Self-Diffusion Nuclear Magnetic Resonance, Microstructure Transitions, and Solubilization Capacity of Phytosterols and Cholesterol in Winsor IV Food-Grade Microemulsions. Journal of Agricultural and Food Chemistry, 2003, 51, 2359-2364.	5.2	68
28	Mechanistic profiling of the siRNA delivery dynamics of lipid–polymer hybrid nanoparticles. Journal of Controlled Release, 2015, 201, 22-31.	9.9	66
29	From Structure to Function: pH-Switchable Antimicrobial Nano-Self-Assemblies. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2821-2829.	8.0	66
30	Preparation of highly concentrated nanostructured dispersions of controlled size. Journal of Colloid and Interface Science, 2008, 326, 211-220.	9.4	65
31	Citrem modulates internal nanostructure of glyceryl monooleate dispersions and bypasses complement activation: Towards development of safe tunable intravenous lipid nanocarriers. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1909-1914.	3.3	64
32	Calcium Triggered Lα-H2 Phase Transition Monitored by Combined Rapid Mixing and Time-Resolved Synchrotron SAXS. PLoS ONE, 2008, 3, e2072.	2.5	63
33	Self-Assembled Nanostructures of Fully Hydrated Monoelaidin–Elaidic Acid and Monoelaidin–Oleic Acid Systems. Langmuir, 2012, 28, 10105-10119.	3.5	60
34	Modulatory Effect of Human Plasma on the Internal Nanostructure and Size Characteristics of Liquid-Crystalline Nanocarriers. Langmuir, 2015, 31, 5042-5049.	3.5	59
35	Structural Investigation of Bulk and Dispersed Inverse Lyotropic Hexagonal Liquid Crystalline Phases of Eicosapentaenoic Acid Monoglyceride. Langmuir, 2017, 33, 14045-14057.	3.5	54
36	Measurement of drug diffusivities in pharmaceutical solvents using Taylor dispersion analysis. Journal of Pharmaceutical and Biomedical Analysis, 2012, 61, 176-183.	2.8	53

#	Article	IF	CITATIONS
37	PEGylation of Phytantriol-Based Lyotropic Liquid Crystalline Particlesâ€"The Effect of Lipid Composition, PEG Chain Length, and Temperature on the Internal Nanostructure. Langmuir, 2014, 30, 6398-6407.	3.5	53
38	Effects of Pressure and Temperature on the Self-Assembled Fully Hydrated Nanostructures of Monooleinâ^'Oil Systems. Langmuir, 2010, 26, 1177-1185.	3 . 5	52
39	Furfuralâ^'Cysteine Model Reaction in Food Grade Nonionic Oil/Water Microemulsions for Selective Flavor Formation. Journal of Agricultural and Food Chemistry, 2002, 50, 2878-2883.	5.2	51
40	Title is missing!. Magyar Apróvad Közlemények, 2002, 69, 163-177.	1.4	50
41	pH-Triggered nanostructural transformations in antimicrobial peptide/oleic acid self-assemblies. Biomaterials Science, 2018, 6, 803-812.	5.4	50
42	Structural characterization of five-component food grade oil-in-water nonionic microemulsions. Physical Chemistry Chemical Physics, 2004, 6, 1524-1533.	2.8	48
43	The Interplay Between Blood Proteins, Complement, and Macrophages on Nanomedicine Performance and Responses. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 581-592.	2.5	47
44	Evaluation of Argan Oil for Deep-Fat Frying. LWT - Food Science and Technology, 2001, 34, 124-130.	5.2	46
45	Solubilization of active molecules in microemulsions for improved environmental protection. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 230, 183-190.	4.7	45
46	Monitoring lidocaine singleâ€crystal dissolution by ultraviolet imaging. Journal of Pharmaceutical Sciences, 2011, 100, 3405-3410.	3.3	45
47	Recent Advances in Cryo-TEM Imaging of Soft Lipid Nanoparticles. AIMS Biophysics, 2015, 2, 116-130.	0.6	45
48	In situ characterization of lipidic bupivacaine-loaded formulations. Soft Matter, 2011, 7, 8291.	2.7	43
49	Structural characterization of lipidic systems under nonequilibrium conditions. European Biophysics Journal, 2012, 41, 831-840.	2,2	43
50	Influence of Vitamin E Acetate and Other Lipids on the Phase Behavior of Mesophases Based on Unsaturated Monoglycerides. Langmuir, 2013, 29, 8222-8232.	3.5	42
51	Structural characterization of self-assemblies of new omega-3 lipids: docosahexaenoic acid and docosapentaenoic acid monoglycerides. Physical Chemistry Chemical Physics, 2018, 20, 23928-23941.	2.8	41
52	Structural Elucidation of Light Activated Vesicles. Journal of Physical Chemistry Letters, 2010, 1, 962-966.	4.6	40
53	Characterization of Oil-Free and Oil-Loaded Liquid-Crystalline Particles Stabilized by Negatively Charged Stabilizer Citrem. Langmuir, 2012, 28, 11755-11766.	3.5	39
54	A hydrodynamic flow focusing microfluidic device for the continuous production of hexosomes based on docosahexaenoic acid monoglyceride. Physical Chemistry Chemical Physics, 2019, 21, 13005-13013.	2.8	38

#	Article	IF	CITATIONS
55	pH-Responsive Nano-Self-Assemblies of the Anticancer Drug 2-Hydroxyoleic Acid. Langmuir, 2019, 35, 7954-7961.	3.5	38
56	Real-time UV imaging of piroxicam diffusion and distribution from oil solutions into gels mimicking the subcutaneous matrix. European Journal of Pharmaceutical Sciences, 2012, 46, 72-78.	4.0	37
57	Microfluidic Platform for the Continuous Production and Characterization of Multilamellar Vesicles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. Journal of Physical Chemistry Letters, 2017, 8, 73-79.	4.6	34
58	Cisplatin Encapsulation Generates Morphologically Different Multicompartments in the Internal Nanostructures of Nonlamellar Liquid-Crystalline Self-Assemblies. Langmuir, 2018, 34, 6570-6581.	3.5	33
59	How the chain configuration governs the packing of inverted micelles in the cubic Fd3m-phase. Soft Matter, 2013, 9, 6291.	2.7	31
60	In Situ Monitoring of Nanostructure Formation during the Digestion of Mayonnaise. ACS Omega, 2017, 2, 1441-1446.	3.5	31
61	Drug release into hydrogel-based subcutaneous surrogates studied by UV imaging. Journal of Pharmaceutical and Biomedical Analysis, 2012, 71, 27-34.	2.8	30
62	Non-Lamellar Liquid Crystalline Nanocarriers for Thymoquinone Encapsulation. Molecules, 2020, 25, 16.	3.8	30
63	Interfacial Modification and Structural Transitions Induced by Guest Molecules Solubilized in U‶ype Nonionic Microemulsions. Journal of Dispersion Science and Technology, 2003, 24, 397-410.	2.4	29
64	Reactivity of furfural–cysteine model reaction in food-grade five-component nonionic O/W microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 253, 223-234.	4.7	28
65	In situ forming drug delivery systems based on lyotropic liquid crystalline phases: structural characterization and release properties. Journal of Drug Delivery Science and Technology, 2013, 23, 325-332.	3.0	26
66	Direct monitoring of calcium-triggered phase transitions in cubosomes using small-angle X-ray scattering combined with microfluidics. Journal of Applied Crystallography, 2016, 49, 2005-2014.	4.5	26
67	Advances in microfluidic synthesis and coupling with synchrotron SAXS for continuous production and real-time structural characterization of nano-self-assemblies. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111633.	5.0	26
68	Pulmonary Delivery of Anticancer Drugs via Lipid-Based Nanocarriers for the Treatment of Lung Cancer: An Update. Pharmaceuticals, 2021, 14, 725.	3.8	24
69	Cross-linked chitosan-coated liposomes for encapsulation of fish-derived peptide. LWT - Food Science and Technology, 2021, 150, 112057.	5. 2	24
70	Nanostructured aqueous dispersions of citrem interacting with lipids and PEGylated lipids. RSC Advances, 2013, 3, 24576.	3.6	23
71	Direct monitoring of lipid transfer on exposure of citrem nanoparticles to an ethanol solution containing soybean phospholipids by combining synchrotron SAXS with microfluidics. Analyst, The, 2017, 142, 3118-3126.	3.5	23
72	Temperature triggering of kinetically trapped self-assemblies in citrem-phospholipid nanoparticles. Chemistry and Physics of Lipids, 2018, 216, 30-38.	3.2	21

#	Article	IF	Citations
73	A structurally diverse library of glycerol monooleate/oleic acid non-lamellar liquid crystalline nanodispersions stabilized with nonionic methoxypoly(ethylene glycol) (mPEG)-lipids showing variable complement activation properties. Journal of Colloid and Interface Science, 2021, 582, 906-917.	9.4	21
74	Argan oil-in-water emulsions: Preparation and stabilization. JAOCS, Journal of the American Oil Chemists' Society, 1999, 76, 15-18.	1.9	20
75	Highly Chemoselective Heterogeneous Pd-Catalyzed Biaryl Synthesis from Haloarenes:Â Reaction in an Oil-in-Water Microemulsion. Organic Process Research and Development, 2003, 7, 641-643.	2.7	20
76	Effects of High Pressure on Internally Self-Assembled Lipid Nanoparticles: A Synchrotron Small-Angle X-ray Scattering (SAXS) Study. Langmuir, 2016, 32, 11907-11917.	3.5	19
77	Delivery of siRNA Complexed with Palmitoylated \hat{l} ±-Peptide \hat{l} 2-Peptoid Cell-Penetrating Peptidomimetics: Membrane Interaction and Structural Characterization of a Lipid-Based Nanocarrier System. Molecular Pharmaceutics, 2016, 13, 1739-1749.	4.6	19
78	Citrem–phosphatidylcholine nano-self-assemblies: solubilization of bupivacaine and its role in triggering a colloidal transition from vesicles to cubosomes and hexosomes. Physical Chemistry Chemical Physics, 2019, 21, 15142-15150.	2.8	19
79	Microemulsions as Potential Carriers of Nisin: Effect of Composition on Structure and Efficacy. Langmuir, 2016, 32, 8988-8998.	3.5	18
80	Hexosome engineering for targeting of regional lymph nodes. Materialia, 2020, 11, 100705.	2.7	17
81	The supramolecular structure is decisive for the immunostimulatory properties of synthetic analogues of a mycobacterial lipid in vitro. RSC Advances, 2013, 3, 20673-20683.	3.6	16
82	Dispersed liquid crystals as pH-adjustable antimicrobial peptide nanocarriers. Journal of Colloid and Interface Science, 2021, 583, 672-682.	9.4	16
83	Role of Electrostatic Interactions on the Transport of Druglike Molecules in Hydrogel-Based Articular Cartilage Mimics: Implications for Drug Delivery. Molecular Pharmaceutics, 2016, 13, 819-828.	4.6	15
84	Transport characteristics in a novel in vitro release model for testing the performance of intra-articular injectables. International Journal of Pharmaceutics, 2019, 566, 445-453.	5.2	15
85	Internal Lamellar and Inverse Hexagonal Liquid Crystalline Phases During the Digestion of Krill and Astaxanthin Oil-in-Water Emulsions. Frontiers in Bioengineering and Biotechnology, 2019, 7, 384.	4.1	15
86	Nano-Self-Assemblies Based on Synthetic Analogues of Mycobacterial Monomycoloyl Glycerol and DDA: Supramolecular Structure and Adjuvant Efficacy. Molecular Pharmaceutics, 2016, 13, 2771-2781.	4.6	12
87	Formation of Internally Nanostructured Triblock Copolymer Particles. Langmuir, 2005, 21, 8597-8600.	3.5	11
88	Interaction of Amino Acid and Dipeptide β-Naphthylamide Derivatives with Hyaluronic Acid and Human Serum Albumin Studied by Capillary Electrophoresis Frontal Analysis. Chromatographia, 2013, 76, 49-57.	1.3	11
89	Adjuvants Based on Synthetic Mycobacterial Cord Factor Analogues: Biophysical Properties of Neat Glycolipids and Nanoself-Assemblies with DDA. Molecular Pharmaceutics, 2017, 14, 2294-2306.	4.6	11
90	In situ monitoring of the formation of lipidic non-lamellar liquid crystalline depot formulations in synovial fluid. Journal of Colloid and Interface Science, 2021, 582, 773-781.	9.4	11

#	Article	IF	CITATIONS
91	The Micellar Cubic Fd3m Phase. Behavior Research Methods, 2013, , 111-145.	4.0	8
92	Cell medium-dependent dynamic modulation of size and structural transformations of binary phospholipid/i‰-3 fatty acid liquid crystalline nano-self-assemblies: Implications in interpretation of cell uptake studies. Journal of Colloid and Interface Science, 2022, 606, 464-479.	9.4	8
93	Continuous Microfluidic Production of Citrem-Phosphatidylcholine Nano-Self-Assemblies for Thymoquinone Delivery. Nanomaterials, 2021, 11, 1510.	4.1	7
94	Nanoencapsulation of food ingredients by cubosomes and hexosomes. , 2019, , 483-522.		6
95	Spatially and time-resolved SAXS for monitoring dynamic structural transitions during in situ generation of non-lamellar liquid crystalline phases in biologically relevant media. Journal of Colloid and Interface Science, 2021, 602, 415-425.	9.4	5
96	Homogeneous RuCl2(PPh3)3-Catalyzed Regioselective Liquid-Phase Transfer Hydrogenation of Carbonâ^'Carbon Double Bond in Chlorobenzylidene Ketones with Ethylene Glycol as Hydrogen Donor. Organic Process Research and Development, 2000, 4, 571-574.	2.7	4
97	Conserved Molecular Superlattices in a Series of Homologous Synthetic Mycobacterial Cell-Wall Lipids Forming Interdigitated Bilayers. Langmuir, 2016, 32, 12693-12701.	3.5	4
98	Investigation of diclofenac release and dynamic structural behavior of non-lamellar liquid crystal formulations during in situ formation by UV–Vis imaging and SAXS. International Journal of Pharmaceutics, 2022, 623, 121880.	5.2	3
99	Formation and Characterization of Emulsified Microemulsions. Surfactant Science, 2008, , .	0.0	2
100	Liquid Crystalline Nanoparticles as Drug Nanocarriers. Surfactant Science, 2010, , 337-353.	0.0	2
101	Chapter 5. Self-Assembled Liquid Particles: How to Modulate their Internal Structure., 0,, 69-85.		O