
Edward J O'loughlin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950838/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consistent controls on trace metal micronutrient speciation in wetland soils and stream sediments. Geochimica Et Cosmochimica Acta, 2022, 317, 234-254.	1.6	8
2	Reduction of Chlorinated Ethenes by Ag- and Cu-Amended Green Rust. Minerals (Basel, Switzerland), 2022, 12, 138.	0.8	1
3	From legacy contamination to watershed systems science: a review of scientific insights and technologies developed through DOE-supported research in water and energy security. Environmental Research Letters, 2022, 17, 043004.	2.2	12
4	Antimony redox processes in the environment: A critical review of associated oxidants and reductants. Journal of Hazardous Materials, 2022, 431, 128607.	6.5	22
5	Distribution and speciation of Sb and toxic metal(loid)s near an antimony refinery and their effects on indigenous microorganisms. Journal of Hazardous Materials, 2021, 403, 123625.	6.5	52
6	Reduction of Sb(V) by coupled biotic-abiotic processes under sulfidogenic conditions. Heliyon, 2021, 7, e06275.	1.4	10
7	Reduction of Vanadium(V) by Iron(II)-Bearing Minerals. Minerals (Basel, Switzerland), 2021, 11, 316.	0.8	24
8	Combined Effects of Fe(III)-Bearing Clay Minerals and Organic Ligands on U(VI) Bioreduction and U(IV) Speciation. Environmental Science & Technology, 2021, 55, 5929-5938.	4.6	28
9	Biogeochemical dynamics and microbial community development under sulfate- and iron-reducing conditions based on electron shuttle amendment. PLoS ONE, 2021, 16, e0251883.	1.1	6
10	Geochemical and microbial characteristics of seepage water and mineral precipitates in a radwaste disposal facility impacted by seawater intrusion and high alkalinity. Journal of Environmental Management, 2021, 285, 112087.	3.8	1
11	Impact of organic acids and sulfate on the biogeochemical properties of soil from urban subsurface environments. Journal of Environmental Management, 2021, 292, 112756.	3.8	8
12	Effects of Fe(III) Oxide Mineralogy and Phosphate on Fe(II) Secondary Mineral Formation during Microbial Iron Reduction. Minerals (Basel, Switzerland), 2021, 11, 149.	0.8	19
13	Controls on Iron Reduction and Biomineralization over Broad Environmental Conditions as Suggested by the Firmicutes <i>Orenia metallireducens</i> Strain Z6. Environmental Science & Technology, 2020, 54, 10128-10140.	4.6	31
14	Draft Genome Sequence of Pseudarthrobacter sp. Strain ATCC 49442 (Formerly Micrococcus luteus), a Pyridine-Degrading Bacterium. Microbiology Resource Announcements, 2020, 9, .	0.3	1
15	Bacterial and Archaeal Diversity and Abundance in Shallow Subsurface Clay Sediments at Jianghan Plain, China. Frontiers in Microbiology, 2020, 11, 572560.	1.5	1
16	Reduction of Hg(II) by Fe(II)-Bearing Smectite Clay Minerals. Minerals (Basel, Switzerland), 2020, 10, 1079.	0.8	14
17	Draft Genome Sequence of 2-Methylpyridine-, 2-Ethylpyridine-, and 2-Hydroxypyridine-Degrading Arthrobacter sp. Strain ATCC 49987. Microbiology Resource Announcements, 2020, 9, .	0.3	0
18	Draft Genome Sequence of Rhodococcus sp. Strain ATCC 49988, a Quinoline-Degrading Bacterium. Microbiology Resource Announcements, 2019, 8, .	0.3	4

Edward J O'LOUGHLIN

#	Article	IF	CITATIONS
19	Electron Donor Utilization and Secondary Mineral Formation during the Bioreduction of Lepidocrocite by Shewanella putrefaciens CN32. Minerals (Basel, Switzerland), 2019, 9, 434.	0.8	18
20	Characterization of phthalate-degrading bacteria from Asian carp microbiomes and riverine sediments. International Biodeterioration and Biodegradation, 2019, 143, 104727.	1.9	10
21	Microbial Degradation of Pyridine and Pyridine Derivatives. Microorganisms for Sustainability, 2019, , 1-31.	0.4	5
22	Data on the characterization of phthalate-degrading bacteria from Asian carpÂmicrobiomes and riverine sediments. Data in Brief, 2019, 25, 104375.	0.5	10
23	Seasonal microbial variation accounts for arsenic dynamics in shallow alluvial aquifer systems. Journal of Hazardous Materials, 2019, 367, 109-119.	6.5	34
24	U(VI) Reduction by Biogenic and Abiotic Hydroxycarbonate Green Rusts: Impacts on U(IV) Speciation and Stability Over Time. Environmental Science & Technology, 2018, 52, 4601-4609.	4.6	19
25	Application of an in-situ soil sampler for assessing subsurface biogeochemical dynamics in a diesel-contaminated coastal site during soil flushing operations. Journal of Environmental Management, 2018, 206, 938-948.	3.8	9
26	Surface area effects on the reduction of UVI in the presence of synthetic montmorillonite. Chemical Geology, 2017, 464, 110-117.	1.4	19
27	Hematite Reduction Buffers Acid Generation and Enhances Nutrient Uptake by a Fermentative Iron Reducing Bacterium, <i>Orenia metallireducens</i> Strain Z6. Environmental Science & Technology, 2017, 51, 232-242.	4.6	33
28	Impact of Organic Carbon Electron Donors on Microbial Community Development under Iron- and Sulfate-Reducing Conditions. PLoS ONE, 2016, 11, e0146689.	1.1	40
29	Orenia metallireducens sp. nov. Strain Z6, a Novel Metal-Reducing Member of the Phylum Firmicutes from the Deep Subsurface. Applied and Environmental Microbiology, 2016, 82, 6440-6453.	1.4	25
30	Tepidibacillus decaturensis sp. nov., a microaerophilic, moderately thermophilic iron-reducing bacterium isolated from 1.7 km depth groundwater. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3964-3971.	0.8	16
31	Geochemical characteristics and microbial community composition in toxic metal-rich sediments contaminated with Au–Ag mine tailings. Journal of Hazardous Materials, 2015, 296, 147-157.	6.5	44
32	Water quality changes in acid mine drainage streams in Gangneung, Korea, 10 years after treatment with limestone. Journal of Geochemical Exploration, 2015, 159, 234-242.	1.5	37
33	Effects of Phosphate on Secondary Mineral Formation During the Bioreduction of Akaganeite (.β-FeOOH): Green Rust Versus Framboidal Magnetite. Current Inorganic Chemistry, 2015, 5, 214-224.	0.2	19
34	Fe-oxide grain coatings support bacterial Fe-reducing metabolisms in 1.7−2.0 km-deep subsurface quartz arenite sandstone reservoirs of the Illinois Basin (USA). Frontiers in Microbiology, 2014, 5, 511.	1.5	12
35	<scp><i>H</i></scp> <i>alomonas sulfidaeris</i> â€dominated microbial community inhabits a 1.8 kmâ€deep subsurface <scp>C</scp> ambrian <scp>S</scp> andstone reservoir. Environmental Microbiology, 2014, 16, 1695-1708.	1.8	52
36	The complete genome sequence for putative <scp>H</scp> ₂ ―and <scp>S</scp> â€oxidizer <scp><i>C</i></scp> <i>andidatus</i> Sulfuricurvum sp., assembled <i>de novo</i> from an aquiferâ€derived metagenome. Environmental Microbiology, 2014, 16, 3443-3462.	1.8	69

Edward J O'LOUGHLIN

#	Article	IF	CITATIONS
37	Sulfur-mediated electron shuttling during bacterial iron reduction. Science, 2014, 344, 1039-1042.	6.0	175
38	The transport behavior of As, Cu, Pb, and Zn during electrokinetic remediation of a contaminated soil using electrolyte conditioning. Chemosphere, 2014, 117, 79-86.	4.2	77
39	Acid Extraction Overestimates the Total Fe(II) in the Presence of Iron (Hydr)oxide and Sulfide Minerals. Environmental Science and Technology Letters, 2014, 1, 310-314.	3.9	10
40	Effects of dissimilatory sulfate reduction on FeIII (hydr)oxide reduction and microbial community development. Geochimica Et Cosmochimica Acta, 2014, 129, 177-190.	1.6	68
41	Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate. Journal of Soil and Groundwater Environment, 2014, 19, 54-62.	0.1	2
42	Effects of Bound Phosphate on the Bioreduction of Lepidocrocite (γ-FeOOH) and Maghemite (γ-Fe ₂ O ₃) and Formation of Secondary Minerals. Environmental Science & Technology, 2013, 47, 9157-9166.	4.6	73
43	Bioreduction of Hydrogen Uranyl Phosphate: Mechanisms and U(IV) Products. Environmental Science & Technology, 2013, 47, 5668-5678.	4.6	73
44	Influence of Chloride and Fe(II) Content on the Reduction of Hg(II) by Magnetite. Environmental Science & Technology, 2013, 47, 6987-6994.	4.6	50
45	Abiotic reduction of uranium by Fe(II) in soil. Applied Geochemistry, 2012, 27, 1512-1524.	1.4	70
46	Influence of Magnetite Stoichiometry on U ^{VI} Reduction. Environmental Science & Technology, 2012, 46, 778-786.	4.6	128
47	Binding of Hg ^{II} to High-Affinity Sites on Bacteria Inhibits Reduction to Hg ^O by Mixed Fe ^{II/III} Phases. Environmental Science & Technology, 2011, 45, 9597-9603.	4.6	51
48	Solution and Microbial Controls on the Formation of Reduced U(IV) Species. Environmental Science & Technology, 2011, 45, 8336-8344.	4.6	123
49	Redox Processes Affecting the Speciation of Technetium, Uranium, Neptunium, and Plutonium in Aquatic and Terrestrial Environments. ACS Symposium Series, 2011, , 477-517.	0.5	18
50	Geochemical and microbiological processes contributing to the transformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated aquifer material. Chemosphere, 2011, 84, 1223-1230.	4.2	29
51	Rate Controlling Processes in the Transformation of Tetrachloroethylene and Carbon Tetrachloride under Iron Reducing and Sulfate Reducing Conditions. ACS Symposium Series, 2011, , 519-538.	0.5	8
52	Uranium Transformations in Static Microcosms. Environmental Science & Technology, 2010, 44, 236-242.	4.6	44
53	XAFS Investigation of the Interactions of U ^{VI} with Secondary Mineralization Products from the Bioreduction of Fe ^{III} Oxides. Environmental Science & Technology, 2010, 44, 1656-1661.	4.6	96
54	Effects of Oxyanions, Natural Organic Matter, and Bacterial Cell Numbers on the Bioreduction of Lepidocrocite (Î ³ -FeOOH) and the Formation of Secondary Mineralization Products. Environmental Science & Technology, 2010, 44, 4570-4576.	4.6	125

#	Article	IF	CITATIONS
55	The Relative Contributions of Abiotic and Microbial Processes to the Transformation of Tetrachloroethylene and Trichloroethylene in Anaerobic Microcosms. Environmental Science & Technology, 2009, 43, 690-697.	4.6	30
56	Effects of Electron Transfer Mediators on the Bioreduction of Lepidocrocite (γ-FeOOH) by <i>Shewanella putrefaciens</i> CN32. Environmental Science & Technology, 2008, 42, 6876-6882.	4.6	119
57	Green Rust Formation from the Bioreduction of γ –FeOOH (Lepidocrocite): Comparison of Several <i>Shewanella</i> Species. Geomicrobiology Journal, 2007, 24, 211-230.	1.0	72
58	Adsorption of Fe(II) and U(VI) to carboxyl-functionalized microspheres: The influence of speciation on uranyl reduction studied by titration and XAFS. Geochimica Et Cosmochimica Acta, 2007, 71, 1898-1912.	1.6	89
59	Synchrotron X-ray Investigations of Mineral-Microbe-Metal Interactions. Elements, 2005, 1, 217-221.	0.5	24
60	Elemental and Redox Analysis of Single Bacterial Cells by X-ray Microbeam Analysis. Science, 2004, 306, 686-687.	6.0	170
61	REDUCTION OF HALOGENATED ETHANES BY GREEN RUST. Environmental Toxicology and Chemistry, 2004, 23, 41.	2.2	76
62	Quantification and characterization of dissolved organic carbon and iron in sedimentary porewater from Green Bay, WI, USA. Biogeochemistry, 2004, 71, 371-386.	1.7	52
63	The effect of acidic solutions and growth conditions on the adsorptive properties of bacterial surfaces. Chemical Geology, 2004, 209, 107-119.	1.4	80
64	Effects of Agl, Aulll, and Cullon the Reductive Dechlorination of Carbon Tetrachloride by Green Rust. Environmental Science & Technology, 2003, 37, 2905-2912.	4.6	99
65	Reduction of Uranium(VI) by Mixed Iron(II)/Iron(III) Hydroxide (Green Rust):Â Formation of UO2Nanoparticles. Environmental Science & Technology, 2003, 37, 721-727.	4.6	406
66	Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere, 2003, 53, 437-446.	4.2	144
67	Factors Affecting Humic-Nickel Complex Mediated Reduction of Trichloroethene in Homogeneous Aqueous Solution. Environmental Science & Technology, 2001, 35, 717-724.	4.6	19
68	Effect of detector wavelength on the determination of the molecular weight of humic substances by high-pressure size exclusion chromatography. Water Research, 2001, 35, 333-338.	5.3	87
69	Association of organotin compounds with aquatic and terrestrial humic substances. Environmental Toxicology and Chemistry, 2000, 19, 2015-2021.	2.2	20
70	Effects of sorption on the biodegradation of 2â€methylpyridine in aqueous suspensions of reference clay minerals. Environmental Toxicology and Chemistry, 2000, 19, 2168-2174.	2.2	26
71	Biodegradation of 2-methyl, 2-ethyl, and 2-hydroxypyridine by an Arthrobacter sp. isolated from subsurface sediment. Biodegradation, 1999, 10, 93-104.	1.5	62
72	Reductive Dechlorination of Trichloroethene Mediated by Humicâ^'Metal Complexes. Environmental Science & Technology, 1999, 33, 1145-1147.	4.6	42

Edward J O'LOUGHLIN

#	Article	IF	CITATIONS
73	Isolation, characterization, and substrate utilization of a quinoline-degrading bacterium. International Biodeterioration and Biodegradation, 1996, 38, 107-118.	1.9	45
74	Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. Environmental Science & Technology, 1994, 28, 1853-1858.	4.6	1,535
75	Riboflavin Production during Growth of <i>Micrococcus luteus</i> on Pyridine. Applied and Environmental Microbiology, 1992, 58, 3423-3425.	1.4	12
76	Degradation of pyridines in the environment. Critical Reviews in Environmental Control, 1989, 19, 309-340.	0.7	107