List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prospective Identification of Tumorigenic Prostate Cancer Stem Cells. Cancer Research, 2005, 65, 10946-10951.	0.9	2,564
2	CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 2004, 117, 3539-3545.	2.0	714
3	Identification and isolation of human prostate epithelial stem cells based on α2β1-integrin expression. Journal of Cell Science, 2001, 114, 3865-3872.	2.0	316
4	Prostate Cancer Stem Cells: A New Target for Therapy. Journal of Clinical Oncology, 2008, 26, 2862-2870.	1.6	301
5	Gene expression profiling of human prostate cancer stem cells reveals a pro-inflammatory phenotype and the importance of extracellular matrix interactions. Genome Biology, 2008, 9, R83.	9.6	191
6	JAK-STAT Blockade Inhibits Tumor Initiation and Clonogenic Recovery of Prostate Cancer Stem-like Cells. Cancer Research, 2013, 73, 5288-5298.	0.9	152
7	Enhanced expression of vimentin in motile prostate cell lines and in poorly differentiated and metastatic prostate carcinoma. Prostate, 2002, 52, 253-263.	2.3	149
8	Prostate cancer stem cells. European Journal of Cancer, 2006, 42, 1213-1218.	2.8	141
9	Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. Journal of Pathology, 1992, 167, 365-368.	4.5	135
10	Low temperature plasmas as emerging cancer therapeutics: the state of play and thoughts for the future. Tumor Biology, 2016, 37, 7021-7031.	1.8	122
11	Use of Macrophages to Target Therapeutic Adenovirus to Human Prostate Tumors. Cancer Research, 2011, 71, 1805-1815.	0.9	111
12	Structure of the intact transactivation domain of the human papillomavirus E2 protein. Nature, 2000, 403, 805-809.	27.8	95
13	Inhibition of the PI3K/AKT/mTOR pathway activates autophagy and compensatory Ras/Raf/MEK/ERK signalling in prostate cancer. Oncotarget, 2017, 8, 56698-56713.	1.8	95
14	The molecular and cellular origin of human prostate cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1238-1260.	4.1	92
15	A preclinical xenograft model of prostate cancer using human tumors. Nature Protocols, 2013, 8, 836-848.	12.0	90
16	Benign prostatic hyperplasia – what do we know?. BJU International, 2021, 127, 389-399.	2.5	90
17	Prostate Cancer Stem Cells: Do They Have a Basal or Luminal Phenotype?. Hormones and Cancer, 2011, 2, 47-61.	4.9	82
18	Movember GAP1 PDX project: An international collection of serially transplantable prostate cancer patientâ€derived xenograft (PDX) models. Prostate, 2018, 78, 1262-1282.	2.3	76

#	Article	IF	CITATIONS
19	Human Epithelial Basal Cells Are Cells of Origin of Prostate Cancer, Independent of CD133 Status. Stem Cells, 2012, 30, 1087-1096.	3.2	73
20	Androgen receptor signalling in prostate: Effects of stromal factors on normal and cancer stem cells. Molecular and Cellular Endocrinology, 2008, 288, 30-37.	3.2	68
21	A tumour stem cell hypothesis for the origins of prostate cancer. BJU International, 2005, 96, 1219-1223.	2.5	66
22	An Epigenetic Reprogramming Strategy to Resensitize Radioresistant Prostate Cancer Cells. Cancer Research, 2016, 76, 2637-2651.	0.9	62
23	MicroRNA Expression Profile of Primary Prostate Cancer Stem Cells as a Source of Biomarkers and Therapeutic Targets. European Urology, 2015, 67, 7-10.	1.9	61
24	Altered Expression of Neurotensin Receptors Is Associated with the Differentiation State of Prostate Cancer. Cancer Research, 2010, 70, 347-356.	0.9	55
25	Monoallelic expression of TMPRSS2/ERG in prostate cancer stem cells. Nature Communications, 2013, 4, 1623.	12.8	49
26	Cyclin A1 and P450 Aromatase Promote Metastatic Homing and Growth of Stem-like Prostate Cancer Cells in the Bone Marrow. Cancer Research, 2016, 76, 2453-2464.	0.9	47
27	Androgens are not a direct requirement for the proliferation of human prostatic epitheliumin vitro. , 1997, 73, 910-916.		44
28	Cancer Stem Cells, Models of Study and Implications of Therapy Resistance Mechanisms. Advances in Experimental Medicine and Biology, 2011, 720, 105-118.	1.6	44
29	In VitroModels to Study Cellular Differentiation and Function in Human Prostate Cancers. Radiation Research, 2001, 155, 133-142.	1.5	42
30	Low Temperature Plasma: A Novel Focal Therapy for Localized Prostate Cancer?. BioMed Research International, 2014, 2014, 1-15.	1.9	41
31	Regulation of Protein Kinase B activity by PTEN and SHIP2 in human prostate-derived cell lines. Cellular Signalling, 2007, 19, 129-138.	3.6	39
32	Phospholipase D inhibitors reduce human prostate cancer cell proliferation and colony formation. British Journal of Cancer, 2018, 118, 189-199.	6.4	39
33	Inflammation as the primary aetiological agent of human prostate cancer: A stem cell connection?. Journal of Cellular Biochemistry, 2008, 105, 931-939.	2.6	38
34	Prostate cancer stem cells: Are they androgen-responsive?. Molecular and Cellular Endocrinology, 2012, 360, 14-24.	3.2	37
35	FGF7/KGF triggers cell transformation and invasion on immortalised human prostatic epithelial PNT1A cells. , 1999, 82, 237-243.		36
36	Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer. Molecular Cancer, 2011, 10, 94.	19.2	36

#	Article	IF	CITATIONS
37	Human papillomavirus type 16 E2-specific T-helper lymphocyte responses in patients with cervical intraepithelial neoplasia. Journal of General Virology, 1999, 80, 2453-2459.	2.9	36
38	Differential Cytotoxic Activity of a Novel Palladium-Based Compound on Prostate Cell Lines, Primary Prostate Epithelial Cells and Prostate Stem Cells. PLoS ONE, 2013, 8, e64278.	2.5	35
39	Inhibition of the glucocorticoid receptor results in an enhanced miR-99a/100-mediated radiation response in stem-like cells from human prostate cancers. Oncotarget, 2016, 7, 51965-51980.	1.8	35
40	Detection of Epsteinâ€Barr virus in oral scrapes in HIV infection, in hairy leukoplakia, and in Healthy nonâ€HIVâ€infected people. Journal of Oral Pathology and Medicine, 1998, 27, 480-482.	2.7	34
41	Inverse relationship between the expression of the human papillomavirus type 16 transcription factor E2 and virus DNA copy number during the progression of cervical intraepithelial neoplasia. Microbiology (United Kingdom), 2000, 81, 1825-1832.	1.8	33
42	Advanced prostate cancer—a case for adjuvant differentiation therapy. Nature Reviews Urology, 2012, 9, 595-602.	3.8	32
43	An Internal Polyadenylation Signal Substantially Increases Expression Levels of Lentivirus-Delivered Transgenes but Has the Potential to Reduce Viral Titer in a Promoter-Dependent Manner. Human Gene Therapy, 2008, 19, 840-850.	2.7	31
44	Detection of cytomegalovirus and Epstein-Barr virus in labial salivary glands in Sjogren's syndrome and non-specific sialadenitis. Journal of Oral Pathology and Medicine, 1995, 24, 293-298.	2.7	30
45	Seeding drug discovery: integrating telomerase cancer biology and cellular senescence to uncover new therapeutic opportunities in targeting cancer stem cells. Drug Discovery Today, 2007, 12, 611-621.	6.4	30
46	Effects on prostate cancer cells of targeting RNA polymerase III. Nucleic Acids Research, 2019, 47, 3937-3956.	14.5	30
47	Expression patterns of the human papillomavirus type 16 transcription factor E2 in low- and high-grade cervical intraepithelial neoplasia. , 1998, 186, 275-280.		29
48	Preclinical evaluation of innate immunity to baculovirus gene therapy vectors in whole human blood. Molecular Immunology, 2009, 46, 2911-2917.	2.2	29
49	Adenovirus-Derived Vectors for Prostate Cancer Gene Therapy. Human Gene Therapy, 2010, 21, 795-805.	2.7	29
50	Mechanistic rationale for MCL1 inhibition during androgen deprivation therapy. Oncotarget, 2015, 6, 6105-6122.	1.8	28
51	The calcium sensor STIM1 is regulated by androgens in prostate stromal cells. Prostate, 2011, 71, 1646-1655.	2.3	27
52	Resistance to Antiandrogens in Prostate Cancer: Is It Inevitable, Intrinsic or Induced?. Cancers, 2021, 13, 327.	3.7	27
53	Retinoic acid and androgen receptors combine to achieve tissue specific control of human prostatic transglutaminase expression: a novel regulatory network with broader significance. Nucleic Acids Research, 2012, 40, 4825-4840.	14.5	26
54	Differential regulation of TROP2 release by PKC isoforms through vesicles and ADAM17. Cellular Signalling, 2015, 27, 1325-1335.	3.6	26

#	Article	IF	CITATIONS
55	CIP2A is a candidate therapeutic target in clinically challenging prostate cancer cell populations. Oncotarget, 2015, 6, 19661-19670.	1.8	26
56	Prominin-1 (CD133) Expression in the Prostate and Prostate Cancer: A Marker for Quiescent Stem Cells. Advances in Experimental Medicine and Biology, 2013, 777, 167-184.	1.6	25
57	Adenovirus Serotype 5 Vectors with Tat-PTD Modified Hexon and Serotype 35 Fiber Show Greatly Enhanced Transduction Capacity of Primary Cell Cultures. PLoS ONE, 2013, 8, e54952.	2.5	25
58	Baculoviruses as Vectors for Gene Therapy against Human Prostate Cancer. Journal of Biomedicine and Biotechnology, 2003, 2003, 79-91.	3.0	23
59	Development and limitations of lentivirus vectors as tools for tracking differentiation in prostate epithelial cells. Experimental Cell Research, 2010, 316, 3161-3171.	2.6	23
60	Constitutive expression of FGF2/bFGF in non-tumorigenic human prostatic epithelial cells results in the acquisition of a partial neoplastic phenotype. , 1997, 72, 543-547.		22
61	DIFFERENTIATION OF PROSTATE EPITHELIAL CELL CULTURES BY MATRIGEL/ STROMAL CELL GLANDULAR RECONSTRUCTION. In Vitro Cellular and Developmental Biology - Animal, 2006, 42, 273.	1.5	22
62	Primary prostate stromal cells modulate the morphology and migration of primary prostate epithelial cells in type 1 collagen gels. Cancer Research, 2002, 62, 58-62.	0.9	22
63	Evaluating Baculovirus as a Vector for Human Prostate Cancer Gene Therapy. PLoS ONE, 2013, 8, e65557.	2.5	21
64	STAT3 inhibition with galiellalactone effectively targets the prostate cancer stem-like cell population. Scientific Reports, 2020, 10, 13958.	3.3	20
65	Analysis of prostate tissue DNA for the presence of human papillomavirus by polymerase chain reaction, cloning, and automated sequencing. , 1997, 52, 8-13.		19
66	Conserved Two-Step Regulatory Mechanism of Human Epithelial Differentiation. Stem Cell Reports, 2014, 2, 180-188.	4.8	18
67	Mechanisms of growth inhibition of primary prostate epithelial cells following gamma irradiation or photodynamic therapy include senescence, necrosis, and autophagy, but not apoptosis. Cancer Medicine, 2016, 5, 61-73.	2.8	18
68	Cancer stem cells - A therapeutic target?. Current Opinion in Molecular Therapeutics, 2010, 12, 662-73.	2.8	18
69	Tumor heterogeneity and therapy resistance - implications for future treatments of prostate cancer. Journal of Cancer Metastasis and Treatment, 2017, 3, 302.	0.8	17
70	Dimerization of the Human Papillomavirus Type 16 E2 N Terminus Results in DNA Looping within the Upstream Regulatory Region. Journal of Virology, 2008, 82, 4853-4861.	3.4	16
71	Harvesting Human Prostate Tissue Material and Culturing Primary Prostate Epithelial Cells. Methods in Molecular Biology, 2016, 1443, 181-201.	0.9	16
72	Baculoviruses as gene therapy vectors for human prostate cancer. Journal of Invertebrate Pathology, 2011, 107, S59-S70.	3.2	15

NORMAN J MAITLAND

#	Article	IF	CITATIONS
73	Telomerase Activity and Telomere Length in Human Benign Prostatic Hyperplasia Stem-like Cells and Their Progeny Implies the Existence of Distinct Basal and Luminal Cell Lineages. European Urology, 2016, 69, 551-554.	1.9	15
74	Low Temperature Plasma Causes Double-Strand Break DNA Damage in Primary Epithelial Cells Cultured From a Human Prostate Tumor. IEEE Transactions on Plasma Science, 2014, 42, 2740-2741.	1.3	14
75	Phenotype-independent DNA methylation changes in prostate cancer. British Journal of Cancer, 2018, 119, 1133-1143.	6.4	14
76	Stem cells and the role of ETS transcription factors in the differentiation hierarchy of normal and malignant prostate epithelium. Journal of Steroid Biochemistry and Molecular Biology, 2017, 166, 68-83.	2.5	13
77	Allelic imbalance within the E-cadherin gene is an infrequent event in prostate carcinogenesis. , 2000, 27, 104-109.		11
78	Phenotypic effects of HPV-16 E2 protein expression in human keratinocytes. Virology, 2010, 401, 314-321.	2.4	11
79	Gene Transfer Vectors Targeted to Human Prostate Cancer: Do We Need Better Preclinical Testing Systems?. Human Gene Therapy, 2010, 21, 815-827.	2.7	11
80	The putative tumour suppressor protein Latexin is secreted by prostate luminal cells and is downregulated in malignancy. Scientific Reports, 2019, 9, 5120.	3.3	11
81	Notch signalling is a potential resistance mechanism of progenitor cells within patientâ€derived prostate cultures following ROSâ€inducing treatments. FEBS Letters, 2020, 594, 209-226.	2.8	11
82	Re: Yves Allorya, Willemien Beukers, Ana Sagrera, et al. Telomerase Reverse Transcriptase Promoter Mutations in Bladder Cancer: High Frequency Across Stages, Detection in Urine, and Lack of Association with Outcome. Eur Urol 2014;65:360–6. European Urology, 2014, 65, e85-e86.	1.9	8
83	Construction of therapeutically relevant human prostate epithelial fate map by utilising miRNA and mRNA microarray expression data. British Journal of Cancer, 2015, 113, 611-615.	6.4	8
84	Aldehyde Dehydrogenases and Prostate Cancer: Shedding Light on Isoform Distribution to Reveal Druggable Target. Biomedicines, 2020, 8, 569.	3.2	8
85	Epigenetic Control of Gene Expression in the Normal and Malignant Human Prostate: A Rapid Response Which Promotes Therapeutic Resistance. International Journal of Molecular Sciences, 2019, 20, 2437.	4.1	7
86	Resolution of Cellular Heterogeneity in Human Prostate Cancers: Implications for Diagnosis and Treatment. Advances in Experimental Medicine and Biology, 2019, 1164, 207-224.	1.6	7
87	Expansion of the 4-(Diethylamino)benzaldehyde Scaffold to Explore the Impact on Aldehyde Dehydrogenase Activity and Antiproliferative Activity in Prostate Cancer. Journal of Medicinal Chemistry, 2022, 65, 3833-3848.	6.4	7
88	Regeneration of interest in the prostate. Nature Reviews Urology, 2009, 6, 184-186.	3.8	6
89	Carcinoma-derived exosomes modify microenvironment. Oncotarget, 2015, 6, 1344-1345.	1.8	6
90	Phospholipase D2 in prostate cancer: protein expression changes with Gleason score. British Journal of Cancer, 2019, 121, 1016-1026.	6.4	5

#	Article	IF	CITATIONS
91	A Detailed Analysis of Gene Expression in Human Basal, Luminal, and Stromal Cell Populations from Benign Prostatic Hyperplasia Tissues and Comparisons with Cultured Basal Cells. European Urology, 2017, 72, 157-159.	1.9	4
92	Immortalization of Human Prostate Cells With the Human Papillomavirus Type 16 E6 Gene. , 2004, 88, 275-286.		3
93	Pathobiology of the human prostate. Trends in Urology Gynaecology & Sexual Health, 2008, 13, 12-19.	0.1	3
94	Semen sampling as a simple, noninvasive surrogate for prostate health screening. Systems Biology in Reproductive Medicine, 2021, 67, 354-365.	2.1	3
95	Assessing the Advantages, Limitations and Potential of Human Primary Prostate Epithelial Cells as a Pre-clinical Model for Prostate Cancer Research. Advances in Experimental Medicine and Biology, 2019, 1164, 109-118.	1.6	3
96	Stem Cells in the Normal and Malignant Prostate. , 2013, , 3-41.		2
97	Expression patterns of the human papillomavirus type 16 transcription factor E2 in low―and highâ€Âgrade cervical intraepithelial neoplasia. Journal of Pathology, 1998, 186, 275-280.	4.5	1
98	FGF7/KGF triggers cell transformation and invasion on immortalised human prostatic epithelial PNT1A cells. International Journal of Cancer, 1999, 82, 237.	5.1	1
99	Cancer Stem Cells Provide New Insights into the Therapeutic Responses of Human Prostate Cancer. , 2013, , 51-75.		1
100	Prostate Cancer Stem Cells. , 0, , 111-134.		0
101	Re: Prognostic Value of Blood mRNA Expression Signatures in Castration-resistant Prostate Cancer: A Prospective, Two-stage Study. European Urology, 2013, 64, 341-342.	1.9	0
102	Can Decellularised Prostate Tissue Be Used to Model Tumour Malignancy?. European Urology Focus, 2016, 2, 409-411.	3.1	0
103	Re: The Early Effects of Rapid Androgen Deprivation on Human Prostate Cancer. European Urology, 2017, 71, 302-303.	1.9	0
104	Overexpression of Placental Growth Factor in Stromal Cells from Benign Prostatic Hyperplasia: Another Piece in the Puzzle?. European Urology Open Science, 2020, 21, 29-32.	0.4	0
105	Cancer Stem Cells in Prostate Cancer. , 2011, , 99-116.		0
106	Therapy Resistance in Prostate Cancer: A Stem Cell Perspective. Pancreatic Islet Biology, 2013, , 279-300.	0.3	0
107	Promoter Hypermethylation. , 2013, , 41-70.		0
108	A fusion at the root of prostate cancer. Asian Journal of Andrology, 2013, 15, 592-593.	1.6	0

#	Article	IF	CITATIONS
109	Exploitation of prostate gene expression to develop targeted therapies. Acta Biomedica, 2003, 74, 105-6.	0.3	0
110	ETS transcription factor ELF3 (ESEâ€1) is a cell cycle regulator in benign and malignant prostate. FEBS Open Bio, 2022, 12, 1365-1387.	2.3	0