

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950785/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Separation of chitin from shrimp shells enabled by transition metal salt aqueous solution and ionic liquid. Chinese Journal of Chemical Engineering, 2023, 53, 133-141.	3.5	5
2	Catalytic Pyrolysis of Poly(ethylene terephthalate) with Molybdenum Oxides for the Production of Olefins and Terephthalic Acid. Industrial & Engineering Chemistry Research, 2022, 61, 5054-5065.	3.7	11
3	Recycling of full components of polyester/cotton blends catalyzed by betaine-based deep eutectic solvents. Journal of Environmental Chemical Engineering, 2022, 10, 107512.	6.7	6
4	Optimization of Poly(ethylene terephthalate) Fiber Degradation by Response Surface Methodology Using an Amino Acid Ionic Liquid Catalyst. ACS Engineering Au, 2022, 2, 350-359.	5.1	8
5	Rapid alcoholysis of PET enhanced by its swelling under high temperature. Journal of Environmental Chemical Engineering, 2022, 10, 107823.	6.7	9
6	Multiple Hydrogen Bonds Promote the Nonmetallic Degradation Process of Polyethylene Terephthalate with an Amino Acid Ionic Liquid Catalyst. Industrial & Engineering Chemistry Research, 2021, 60, 4180-4188.	3.7	16
7	Ion-Exchange Resins for Efficient Removal of Colorants in Bis(hydroxyethyl) Terephthalate. ACS Omega, 2021, 6, 12351-12360.	3.5	27
8	Progress in the catalytic glycolysis of polyethylene terephthalate. Journal of Environmental Management, 2021, 296, 113267.	7.8	79
9	Metal-free and mild photo-thermal synergism in ionic liquids for lignin C _{î±} –C _{î²} bond cleavage to provide aldehydes. Green Chemistry, 2021, 23, 5524-5534.	9.0	15
10	Weak Bonds Joint Effects Catalyze the Cleavage of Strong Câ^'C Bond of Ligninâ€Inspired Compounds and Lignin in Air by Ionic Liquids. ChemSusChem, 2020, 13, 5945-5953.	6.8	7
11	A renewable co-solvent promoting the selective removal of lignin by increasing the total number of hydrogen bonds. Green Chemistry, 2020, 22, 6393-6403.	9.0	18
12	Adsorption Thermodynamics and Kinetics of Resin for Metal Impurities in Bis(2-hydroxyethyl) Terephthalate. Polymers, 2020, 12, 2866.	4.5	9
13	Selective Deoxygenation of Lignin-Derived Phenols and Dimeric Ethers with Protic Ionic Liquids. Industrial & Engineering Chemistry Research, 2020, 59, 4864-4871.	3.7	8
14	Densities and Viscosities of Binary Mixtures Containing the Polyhydric Protic Ionic Liquid(2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate) and Water or Alcohols. Journal of Solution Chemistry, 2020, 49, 423-457.	1.2	15
15	Degradation of poly(ethylene terephthalate) catalyzed by metal-free choline-based ionic liquids. Green Chemistry, 2020, 22, 3122-3131.	9.0	111
16	Metalâ€Free Photochemical Degradation of Ligninâ€Derived Aryl Ethers and Lignin by Autologous Radicals through Ionic Liquid Induction. ChemSusChem, 2019, 12, 4005-4013.	6.8	37
17	Efficient hydrodeoxygenation of lignin-derived phenols and dimeric ethers with synergistic [Bmim]PF ₆ -Ru/SBA-15 catalysis under acid free conditions. Green Chemistry, 2019, 21, 597-605.	9.0	41
18	High Aluminum Content Beta Zeolite as an Active Lewis Acid Catalyst for Î ³ -Valerolactone Decarboxylation. Industrial & Engineering Chemistry Research, 2019, 58, 11841-11848.	3.7	12

#	Article	IF	CITATIONS
19	The molecular mechanism study of insulin on proliferation and differentiation of osteoblasts under high glucose conditions. Cell Biochemistry and Function, 2019, 37, 385-394.	2.9	9
20	Cascade utilization of lignocellulosic biomass to high-value products. Green Chemistry, 2019, 21, 3499-3535.	9.0	273
21	The molecular mechanism study of insulin in promoting wound healing under highâ€glucose conditions. Journal of Cellular Biochemistry, 2019, 120, 16244-16253.	2.6	6
22	Inhibiting degradation of cellulose dissolved in ionic liquids <i>via</i> amino acids. Green Chemistry, 2019, 21, 2777-2787.	9.0	43
23	Highly Efficient Oxidation of 5â€Hydroxymethylfurfural to 2,5â€Furandicarboxylic Acid with Heteropoly Acids and Ionic Liquids. ChemSusChem, 2019, 12, 2715-2724.	6.8	58
24	Physicochemical Properties of Various 2-Hydroxyethylammonium Sulfonate -Based Protic Ionic Liquids and Their Potential Application in Hydrodeoxygenation. Frontiers in Chemistry, 2019, 7, 196.	3.6	14
25	A facile ionic liquid approach to prepare cellulose-rich aerogels directly from corn stalks. Green Chemistry, 2019, 21, 2699-2708.	9.0	32
26	Alcoholysis of polyethylene terephthalate to produce dioctyl terephthalate using choline chloride-based deep eutectic solvents as efficient catalysts. Green Chemistry, 2019, 21, 897-906.	9.0	95
27	Lewis Acid–Base Synergistic Catalysis for Polyethylene Terephthalate Degradation by 1,3-Dimethylurea/Zn(OAc) ₂ Deep Eutectic Solvent. ACS Sustainable Chemistry and Engineering, 2019, 7, 3292-3300.	6.7	121
28	Direct conversion of shrimp shells to <i>O</i> -acylated chitin with antibacterial and anti-tumor effects by natural deep eutectic solvents. Green Chemistry, 2019, 21, 87-98.	9.0	81
29	Electrodeposition of Aluminum in Ionic Liquids. , 2019, , .		0
30	Direct conversion of cellulose to sorbitol via an enhanced pretreatment with ionic liquids. Journal of Chemical Technology and Biotechnology, 2018, 93, 2617-2624.	3.2	15
31	Theoretical studies on glycolysis of poly(ethylene terephthalate) in ionic liquids. RSC Advances, 2018, 8, 8209-8219.	3.6	35
32	Base-free preparation of low molecular weight chitin from crab shell. Carbohydrate Polymers, 2018, 190, 148-155.	10.2	39
33	One-step preparation of an antibacterial chitin/Zn composite from shrimp shells using urea-Zn(OAc) ₂ ·2H ₂ O aqueous solution. Green Chemistry, 2018, 20, 2212-2217.	9.0	24
34	One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Fructose in Ionic Liquids. Industrial & Engineering Chemistry Research, 2018, 57, 1851-1858.	3.7	46
35	One-Step Conversion of Biomass-Derived Furanics into Aromatics by BrÃ,nsted Acid Ionic Liquids at Room Temperature. ACS Sustainable Chemistry and Engineering, 2018, 6, 2541-2551.	6.7	52
36	Separation and characterization of cellulose I material from corn straw by low-cost polyhydric protic ionic liquids. Cellulose, 2018, 25, 3241-3254.	4.9	30

#	Article	IF	CITATIONS
37	Fe–Zr–O catalyzed base-free aerobic oxidation of 5-HMF to 2,5-FDCA as a bio-based polyester monomer. Catalysis Science and Technology, 2018, 8, 164-175.	4.1	88
38	Nanoscale Observation of Microfibril Swelling and Dissolution in Ionic Liquids. ACS Sustainable Chemistry and Engineering, 2018, 6, 909-917.	6.7	18
39	Ultrafast Homogeneous Glycolysis of Waste Polyethylene Terephthalate via a Dissolution-Degradation Strategy. Industrial & Engineering Chemistry Research, 2018, 57, 16239-16245.	3.7	92
40	Facile Synthesis of Cellulose/ZnO Aerogel with Uniform and Tunable Nanoparticles Based on Ionic Liquid and Polyhydric Alcohol. ACS Sustainable Chemistry and Engineering, 2018, 6, 16248-16254.	6.7	14
41	High-efficiency glycolysis of poly(ethylene terephthalate) by sandwich-structure polyoxometalate catalyst with two active sites. Polymer Degradation and Stability, 2018, 156, 22-31.	5.8	58
42	A Simple and Mild Approach for the Synthesis of <i>p</i> â€Xylene from Bioâ€Based 2,5â€Dimethyfuran by Using Metal Triflates. ChemSusChem, 2017, 10, 2394-2401.	6.8	40
43	Electrodeposition of Al from chloroaluminate ionic liquids with different cations. Ionics, 2017, 23, 2449-2455.	2.4	19
44	Rapid and productive extraction of high purity cellulose material via selective depolymerization of the lignin-carbohydrate complex at mild conditions. Green Chemistry, 2017, 19, 2234-2243.	9.0	39
45	In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils. Advances in Materials Science and Engineering, 2017, 2017, 1-8.	1.8	12
46	Conversion of bis(2-hydroxyethylene terephthalate) into 1,4-cyclohexanedimethanol by selective hydrogenation using RuPtSn/Al ₂ O ₃ . RSC Advances, 2016, 6, 48737-48744.	3.6	13
47	Electrodeposition in Ionic Liquids. ChemPhysChem, 2016, 17, 335-351.	2.1	117
48	Using Sub/Supercritical CO ₂ as "Phase Separation Switch―for the Efficient Production of 5-Hydroxymethylfurfural from Fructose in an Ionic Liquid/Organic Biphasic System. ACS Sustainable Chemistry and Engineering, 2016, 4, 557-563.	6.7	40
49	Conversion of lignin model compounds under mild conditions in pseudo-homogeneous systems. Green Chemistry, 2016, 18, 2341-2352.	9.0	66
50	Aluminum Deposition from Lewis Acidic 1â€Butylâ€3â€Methylimidazolium Chloroaluminate Ionic Liquid ([Bmim]Cl/AlCl ₃) Modified with Methyl Nicotinate. ChemElectroChem, 2015, 2, 1794-1798.	3.4	29
51	Preparation of 1,4-cyclohexanedimethanol by selective hydrogenation of a waste PET monomer bis(2-hydroxyethylene terephthalate). RSC Advances, 2015, 5, 485-492.	3.6	14
52	Deep eutectic solvents as highly active catalysts for the fast and mild glycolysis of poly(ethylene) Tj ETQq0 0 0 r	gBT_/Over	lock 10 Tf 50
53	First-Row Transition Metal-Containing Ionic Liquids as Highly Active Catalysts for the Glycolysis of Poly(ethylene terephthalate) (PET). ACS Sustainable Chemistry and Engineering, 2015, 3, 340-348.	6.7	151

⁵⁴A piperidinium-based ionic liquid electrolyte to enhance the electrochemical properties of LiFePO42.42154battery. lonics, 2015, 21, 2109-2117.2.421

#	Article	IF	CITATIONS
55	Fast and effective glycolysis of poly(ethylene terephthalate) catalyzed by polyoxometalate. Polymer Degradation and Stability, 2015, 117, 30-36.	5.8	66
56	Conversion of biomass derived valerolactone into high octane number gasoline with an ionic liquid. Green Chemistry, 2015, 17, 1065-1070.	9.0	60
57	An effective twoâ€step ionic liquids method for cornstalk pretreatment. Journal of Chemical Technology and Biotechnology, 2015, 90, 2057-2065.	3.2	6
58	Enhanced delignification of cornstalk by employing superbase TBD in ionic liquids. RSC Advances, 2014, 4, 27430-27438.	3.6	8
59	Formation of C–C bonds for the production of bio-alkanes under mild conditions. Green Chemistry, 2014, 16, 3589-3595.	9.0	68
60	Effect of nicotinamide on electrodeposition of Al from aluminium chloride (AlCl3)-1-butyl-3-methylimidazolium chloride ([Bmim]Cl) ionic liquids. Journal of Solid State Electrochemistry, 2014, 18, 257-267.	2.5	42
61	Densities and Viscosities of Binary Mixtures Containing 1,3-Dimethylimidazolium Dimethylphosphate and Alcohols. Journal of Chemical & Engineering Data, 2014, 59, 2377-2388.	1.9	52
62	Vinyl-functionalized imidazolium ionic liquids as new electrolyte additives for high-voltage Li-ion batteries. Journal of Solid State Electrochemistry, 2013, 17, 2839-2848.	2.5	34
63	Triethylbutylammonium bis(trifluoromethanesulphonyl)imide ionic liquid as an effective electrolyte additive for Li-ion batteries. Ionics, 2013, 19, 887-894.	2.4	18
64	1â€Allylâ€3â€methylimidazolium halometallate ionic liquids as efficient catalysts for the glycolysis of poly(ethylene terephthalate). Journal of Applied Polymer Science, 2013, 129, 3574-3581.	2.6	59
65	Synthesis, Characterisation and Magnetic Behaviour of Ionic Metalloporphyrins: Metal–Tetrakis(N-Octyl-4-Pyridinium)–Porphyrins with Tetrabromoferrate(III) Anions. Journal of Chemical Research, 2013, 37, 445-450.	1.3	1
66	Urea as an efficient and reusable catalyst for the glycolysis of poly(ethylene terephthalate) wastes and the role of hydrogen bond in this process. Green Chemistry, 2012, 14, 2559.	9.0	129
67	Effective catalysis of poly(ethylene terephthalate) (PET) degradation by metallic acetate ionic liquids. Pure and Applied Chemistry, 2012, 84, 789-801.	1.9	69
68	Characterization of Solid Acid Catalysts and Their Reactivity in the Glycolysis of Poly(ethylene) Tj ETQq0 0 0 rgB	T /Qverloc	k 19 ₃ Tf 50 22
69	Chlorine-free alternatives to the synthesis of ionic liquids for biomass processing. Pure and Applied Chemistry, 2012, 84, 745-754.	1.9	26
70	Electrodeposition of zinc coatings from the solutions of zinc oxide in imidazolium chloride/urea mixtures. Science China Chemistry, 2012, 55, 1587-1597.	8.2	40

71	Three international conferences on ionic liquids held in Beijing in 2012. Science China Chemistry, 2012, 55, 1695-1696.	8.2	0

⁷²Investigation of solid catalysts for glycolysis of polyethylene terephthalate. Chemical Engineering
Journal, 2012, 185-186, 168-177.12.779

#	Article	IF	CITATIONS
73	Composite fibers spun directly from solutions of raw lignocellulosic biomass dissolved in ionic liquids. Green Chemistry, 2011, 13, 1158.	9.0	64
74	Rapid dissolution of lignocellulosic biomass in ionic liquids using temperatures above the glass transition of lignin. Green Chemistry, 2011, 13, 2038.	9.0	203
75	Rheological properties of cotton pulp cellulose dissolved in 1â€butylâ€3â€methylimidazolium chloride solutions. Polymer Engineering and Science, 2011, 51, 2381-2386.	3.1	10
76	Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chemistry, 2010, 12, 968.	9.0	364
77	A promising method for electrodeposition of aluminium on stainless steel in ionic liquid. AICHE Journal, 2009, 55, 783-796.	3.6	52
78	Simple and safe synthesis of microporous aluminophosphate molecular sieves by ionothermal approach. AICHE Journal, 2008, 54, 280-288.	3.6	31
79	Physical Properties of Ionic Liquids: Database and Evaluation. Journal of Physical and Chemical Reference Data, 2006, 35, 1475-1517.	4.2	1,045
80	Periodicity and map for discovery of new ionic liquids. Science in China Series B: Chemistry, 2006, 49, 103-115.	0.8	9
81	Preparation of the Catalytic Chitin/Zn Composite by Combined Ionic Liquid–Inorganic Salt Aqueous Solution from Shrimp Shells. ACS Sustainable Chemistry and Engineering, 0, , .	6.7	6
82	A techno-economic analysis of bio-gasoline production from corn stover via catalytic conversion. Clean Technologies and Environmental Policy, 0, , 1.	4.1	1