
Ethan M Shevach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Control of Memory Phenotype T Lymphocyte Homeostasis: Role of Costimulation. Journal of Immunology, 2022, 208, 851-860.	0.4	9
2	Helios represses megakaryocyte priming in hematopoietic stem and progenitor cells. Journal of Experimental Medicine, 2021, 218, .	4.2	4
3	IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight, 2021, 6, .	2.3	26
4	Type I IFN signaling in T regulatory cells modulates chemokine production and myeloid derived suppressor cells trafficking during EAE. Journal of Autoimmunity, 2020, 115, 102525.	3.0	5
5	Control of regulatory T cell homeostasis. Current Opinion in Immunology, 2020, 67, 18-26.	2.4	16
6	T Follicular Regulatory Cell Suppression of T Follicular Helper Cell Function Is Context-Dependent in vitro. Frontiers in Immunology, 2020, 11, 637.	2.2	10
7	Cutting Edge: Inhibition of the Interaction of NK Inhibitory Receptors with MHC Class I Augments Antiviral and Antitumor Immunity. Journal of Immunology, 2020, 205, 567-572.	0.4	3
8	Regulatory T cells: Master thieves of the immune system. Cellular Immunology, 2020, 355, 104160.	1.4	31
9	Salt Sensing by Serum/Glucocorticoid-Regulated Kinase 1 Promotes Th17-like Inflammatory Adaptation of Foxp3+ Regulatory T Cells. Cell Reports, 2020, 30, 1515-1529.e4.	2.9	33
10	Selective deletion of Eos (Ikzf4) in T-regulatory cells leads to loss of suppressive function and development of systemic autoimmunity. Journal of Autoimmunity, 2019, 105, 102300.	3.0	30
11	Helios: still behind the clouds. Immunology, 2019, 158, 161-170.	2.0	66
12	Helios Deficiency Predisposes the Differentiation of CD4+Foxp3â^' T Cells into Peripherally Derived Regulatory T Cells. Journal of Immunology, 2019, 203, 370-378.	0.4	9
13	IKZF2 Drives Leukemia Stem Cell Self-Renewal and Inhibits Myeloid Differentiation. Cell Stem Cell, 2019, 24, 153-165.e7.	5.2	66
14	Helios ⁺ and Helios ^{â^'} Treg subpopulations are phenotypically and functionally distinct and express dissimilar TCR repertoires. European Journal of Immunology, 2019, 49, 398-412.	1.6	133
15	Regulatory T cells mediate specific suppression by depleting peptide–MHC class II from dendritic cells. Nature Immunology, 2019, 20, 218-231.	7.0	177
16	CD47 Expression in Natural Killer Cells Regulates Homeostasis and Modulates Immune Response to Lymphocytic Choriomeningitis Virus. Frontiers in Immunology, 2018, 9, 2985.	2.2	52
17	PD-1 Inhibitory Receptor Downregulates Asparaginyl Endopeptidase and Maintains Foxp3 Transcription Factor Stability in Induced Regulatory T Cells. Immunity, 2018, 49, 247-263.e7.	6.6	104
18	Foxp3+ T Regulatory Cells: Still Many Unanswered Questions—A Perspective After 20 Years of Study. Frontiers in Immunology, 2018, 9, 1048.	2.2	122

#	Article	IF	CITATIONS
19	SAMHD1 Posttranscriptionally Controls the Expression of Foxp3 and Helios in Human T Regulatory Cells. Journal of Immunology, 2018, 201, 1671-1680.	0.4	6
20	Type I interferon signaling attenuates regulatory T cell function in viral infection and in the tumor microenvironment. PLoS Pathogens, 2018, 14, e1006985.	2.1	77
21	TCR Signaling and CD28/CTLA-4 Signaling Cooperatively Modulate T Regulatory Cell Homeostasis. Journal of Immunology, 2017, 198, 1503-1511.	0.4	40
22	Ex-vivo iTreg differentiation revisited: Convenient alternatives to existing strategies. Journal of Immunological Methods, 2017, 441, 67-71.	0.6	12
23	Garp as a therapeutic target for modulation of T regulatory cell function. Expert Opinion on Therapeutic Targets, 2017, 21, 191-200.	1.5	22
24	The role of platelet and endothelial GARP in thrombosis and hemostasis. PLoS ONE, 2017, 12, e0173329.	1.1	27
25	The GARP/Latent TGFâ€Î²1 complex on Treg cells modulates the induction of peripherally derived Treg cells during oral tolerance. European Journal of Immunology, 2016, 46, 1480-1489.	1.6	40
26	A Simple, Versatile Antibody-Based Barcoding Method for Flow Cytometry. Journal of Immunology, 2016, 197, 2027-2038.	0.4	38
27	γδT Cells Protect the Liver and Lungs of Mice from Autoimmunity Induced by Scurfy Lymphocytes. Journal of Immunology, 2016, 196, 1517-1528.	0.4	14
28	Transcriptome profiling of human FoxP3+ regulatory T cells. Human Immunology, 2016, 77, 201-213.	1.2	67
29	Helios Controls a Limited Subset of Regulatory T Cell Functions. Journal of Immunology, 2016, 196, 144-155.	0.4	139
30	Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight, 2016, 1, .	2.3	155
31	Tregs, Helios and tumor immunity: the sun has not yet risen. Translational Cancer Research, 2016, 5, S672-S674.	0.4	2
32	Eos Is Redundant for Regulatory T Cell Function but Plays an Important Role in IL-2 and Th17 Production by CD4+ Conventional T Cells. Journal of Immunology, 2015, 195, 553-563.	0.4	41
33	Engineered antigen-specific human regulatory T cells: immunosuppression of FVIII-specific T- and B-cell responses. Blood, 2015, 125, 1107-1115.	0.6	137
34	IFN-α/β Receptor Signaling Promotes Regulatory T Cell Development and Function under Stress Conditions. Journal of Immunology, 2015, 194, 4265-4276.	0.4	69
35	Coexpression of TIGIT and FCRL3 Identifies Helios+ Human Memory Regulatory T Cells. Journal of Immunology, 2015, 194, 3687-3696.	0.4	115
36	William E. Paul 1936–2015. Nature Immunology, 2015, 16, 1205-1205.	7.0	0

#	Article	IF	CITATIONS
37	Foxp3-mediated inhibition of Akt inhibits Glut1 (glucose transporter 1) expression in human T regulatory cells. Journal of Leukocyte Biology, 2015, 97, 279-283.	1.5	60
38	TCR signaling fuels Treg cell suppressor function. Nature Immunology, 2014, 15, 1002-1003.	7.0	20
39	Release of Active TGF-β1 from the Latent TGF-β1/GARP Complex on T Regulatory Cells Is Mediated by Integrin β8. Journal of Immunology, 2014, 193, 2843-2849.	0.4	82
40	tTregs, pTregs, and iTregs: similarities and differences. Immunological Reviews, 2014, 259, 88-102.	2.8	459
41	Regulatory T cells: recommendations to simplify the nomenclature. Nature Immunology, 2013, 14, 307-308.	7.0	537
42	Modulation of <scp>T</scp> reg cells/ <scp>T</scp> effector function by GITR signaling is context–dependent. European Journal of Immunology, 2013, 43, 2421-2429.	1.6	89
43	Antigen-Specific Induced T Regulatory Cells Impair Dendritic Cell Function via an IL-10/MARCH1–Dependent Mechanism. Journal of Immunology, 2013, 191, 5875-5884.	0.4	64
44	Absence of signaling into CD4+ cells via C3aR and C5aR enables autoinductive TGF-β1 signaling and induction of Foxp3+ regulatory T cells. Nature Immunology, 2013, 14, 162-171.	7.0	273
45	Regulation of the Expression of GARP/Latent TGF- $\hat{1}^21$ Complexes on Mouse T Cells and Their Role in Regulatory T Cell and Th17 Differentiation. Journal of Immunology, 2013, 190, 5506-5515.	0.4	83
46	Oligodeoxynucleotides stabilize Helios-expressing Foxp3+ human T regulatory cells during in vitro expansion. Blood, 2012, 119, 2810-2818.	0.6	113
47	Application of IL-2 therapy to target T regulatory cell function. Trends in Immunology, 2012, 33, 626-632.	2.9	89
48	Biological Functions of Regulatory T Cells. Advances in Immunology, 2011, 112, 137-176.	1.1	122
49	Highlights of 10 years of immunology in Nature Reviews Immunology. Nature Reviews Immunology, 2011, 11, 693-702.	10.6	95
50	Polyclonal Treg cells modulate T effector cell trafficking. European Journal of Immunology, 2011, 41, 2862-2870.	1.6	40
51	IL-2 Controls the Stability of Foxp3 Expression in TGF-β–Induced Foxp3+ T Cells In Vivo. Journal of Immunology, 2011, 186, 6329-6337.	0.4	233
52	Regulatory T-cell expansion during chronic viral infection is dependent on endogenous retroviral superantigens. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3677-3682.	3.3	83
53	The Resurrection of T Cell-Mediated Suppression. Journal of Immunology, 2011, 186, 3805-3807.	0.4	21
54	CD4+CD25+ T regulatory cells limit effector T cells and favor the progression of brucellosis in BALB/c mice. Microbes and Infection, 2010, 12, 3-10.	1.0	26

#	Article	IF	CITATIONS
55	TGF-β to the Rescue. Immunity, 2010, 32, 585-587.	6.6	5
56	Simvastatin induces Foxp3 ⁺ T regulatory cells by modulation of transforming growth factorâ€Î² signal transduction. Immunology, 2010, 130, 484-493.	2.0	80
57	Polyclonal Treg cells enhance the activity of a mucosal adjuvant. Immunology and Cell Biology, 2010, 88, 698-706.	1.0	23
58	Autoantibodies in Scurfy Mice and IPEX Patients Recognize Keratin 14. Journal of Investigative Dermatology, 2010, 130, 1391-1399.	0.3	28
59	Expression of Helios, an Ikaros Transcription Factor Family Member, Differentiates Thymic-Derived from Peripherally Induced Foxp3+ T Regulatory Cells. Journal of Immunology, 2010, 184, 3433-3441.	0.4	1,158
60	Role of Regulatory/Suppressor T Cells in Immune Responses. , 2010, , 203-213.		0
61	GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3 ⁺ regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 13445-13450.	3.3	405
62	Analysis of Adhesion Molecules, Target Cells, and Role of IL-2 in Human FOXP3+ Regulatory T Cell Suppressor Function. Journal of Immunology, 2009, 182, 2929-2938.	0.4	94
63	Engagement of TLR2 Does not Reverse the Suppressor Function of Mouse Regulatory T Cells, but Promotes Their Survival. Journal of Immunology, 2009, 183, 4458-4466.	0.4	83
64	Mechanisms of Foxp3+ T Regulatory Cell-Mediated Suppression. Immunity, 2009, 30, 636-645.	6.6	1,506
65	Pre-differentiated Th1 and Th17 effector T cells in autoimmune gastritis: Ag-specific regulatory T cells are more potent suppressors than polyclonal regulatory T cells. International Immunopharmacology, 2009, 9, 540-545.	1.7	16
66	Therapeutic potential of FOXP3+ regulatory T cells and their interactions with dendritic cells. Human Immunology, 2009, 70, 294-299.	1.2	48
67	Selective expression of latency-associated peptide (LAP) and IL-1 receptor type I/II (CD121a/CD121b) on activated human FOXP3+ regulatory T cells allows for their purification from expansion cultures. Blood, 2009, 113, 5125-5133.	0.6	170
68	Role of TGF-Î ² in the Induction of Foxp3 Expression and T Regulatory Cell Function. Journal of Clinical Immunology, 2008, 28, 640-646.	2.0	83
69	The critical contribution of TGFâ€Î² to the induction of Foxp3 expression and regulatory T cell function. European Journal of Immunology, 2008, 38, 915-917.	1.6	100
70	TGFâ€Î²â€induced Foxp3 ⁺ regulatory T cells rescue scurfy mice. European Journal of Immunology, 2008, 38, 1814-1821.	1.6	126
71	T-cell-expressed proprotein convertase furin is essential for maintenance of peripheral immune tolerance. Nature, 2008, 455, 246-250.	13.7	183
72	Special regulatory T cell review: How I became a T suppressor/ regulatory cell maven. Immunology, 2008, 123, 3-5.	2.0	16

#	Article	IF	CITATIONS
73	Regulating Suppression. Science, 2008, 322, 202-203.	6.0	16
74	Costimulatory effects of IL-1 on the expansion/differentiation of CD4+CD25+Foxp3+ and CD4+CD25+Foxp3– T cells. Journal of Leukocyte Biology, 2008, 84, 480-487.	1.5	25
75	Cutting Edge: Antigen-Specific TGFβ-Induced Regulatory T Cells Suppress Th17-Mediated Autoimmune Disease. Journal of Immunology, 2008, 181, 8209-8213.	0.4	115
76	Th1, Th2, and Th17 Effector T Cell-Induced Autoimmune Gastritis Differs in Pathological Pattern and in Susceptibility to Suppression by Regulatory T Cells. Journal of Immunology, 2008, 181, 1908-1916.	0.4	145
77	CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGF-β–dependent manner. Journal of Experimental Medicine, 2008, 205, 1975-1981.	4.2	293
78	Cutting Edge: CD4 T Cell-Mast Cell Interactions Alter IgE Receptor Expression and Signaling. Journal of Immunology, 2008, 180, 2039-2043.	0.4	79
79	Response: Anti–human FOXP3 mAb PCH101 stains activated human naÃ⁻ve T cells nonspecifically. Blood, 2008, 111, 464-466.	0.6	20
80	Human FOXP3+ T regulatory cells suppress mouse T cell activation by targeting mouse dendritic cells via a human LFAâ€1/mouse ICAMâ€1 mediated interaction. FASEB Journal, 2008, 22, 848.3.	0.2	1
81	Antigenâ€specific TGFâ€betaâ€induced regulatory T cells modulate mouse splenic dendritic cell function. FASEB Journal, 2008, 22, 848.20.	0.2	Ο
82	CD4+FoxP3+ regulatory T cells confer infectious tolerance in a TGFâ€Î² dependent manner. FASEB Journal, 2008, 22, 848.8.	0.2	0
83	Cutting Edge: IL-2 Is Essential for TGF-Î ² -Mediated Induction of Foxp3+ T Regulatory Cells. Journal of Immunology, 2007, 178, 4022-4026.	0.4	449
84	Autoantigen-Specific TGFβ-Induced Foxp3+ Regulatory T Cells Prevent Autoimmunity by Inhibiting Dendritic Cells from Activating Autoreactive T Cells. Journal of Immunology, 2007, 179, 4685-4693.	0.4	188
85	Distinct Subsets of FoxP3+ Regulatory T Cells Participate in the Control of Immune Responses. Journal of Immunology, 2007, 178, 6901-6911.	0.4	90
86	CD4+CD25+ regulatory T cells are activated in vivo by recognition of self. International Immunology, 2007, 19, 557-566.	1.8	27
87	Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood, 2007, 109, 4368-4375.	0.6	488
88	Induction of FOXP3 expression in naive human CD4+FOXP3â^' T cells by T-cell receptor stimulation is transforming growth factor-β–dependent but does not confer a regulatory phenotype. Blood, 2007, 110, 2983-2990.	0.6	699
89	Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, 2007, 26, 371-381.	6.6	1,317
90	CD4+ CD5+regulatory T cells render naive CD4+ CD25-T cells anergic and suppressive. Immunology, 2007, 120, 447-455.	2.0	43

#	Article	IF	CITATIONS
91	From Vanilla to 28 Flavors: Multiple Varieties of T Regulatory Cells. Immunity, 2006, 25, 195-201.	6.6	483
92	Activated CD4+CD25+ T cells selectively kill B lymphocytes. Blood, 2006, 107, 3925-3932.	0.6	420
93	TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood, 2006, 108, 253-261.	0.6	716
94	The lifestyle of naturally occurring CD4+CD25+Foxp3+ regulatory T cells. Immunological Reviews, 2006, 212, 60-73.	2.8	430
95	Activated T cells express the OX40 ligand: requirements for induction and costimulatory function. Immunology, 2006, 117, 196-204.	2.0	39
96	The GITR–GITRL interaction: co-stimulation or contrasuppression of regulatory activity?. Nature Reviews Immunology, 2006, 6, 613-618.	10.6	252
97	Recognition of a New ARTC1 Peptide Ligand Uniquely Expressed in Tumor Cells by Antigen-Specific CD4+ Regulatory T Cells. Journal of Immunology, 2005, 174, 2661-2670.	0.4	156
98	TGF-β1 production by CD4+CD25+ regulatory T cells is not essential for suppression of intestinal inflammation. European Journal of Immunology, 2005, 35, 2886-2895.	1.6	111
99	CD4+CD25+ T Cells Prevent the Development of Organ-Specific Autoimmune Disease by Inhibiting the Differentiation of Autoreactive Effector T Cells. Journal of Immunology, 2005, 175, 7135-7142.	0.4	111
100	Bone Marrow-Derived Dendritic Cells Reverse the Anergic State of CD4+CD25+ T Cells without Reversing Their Suppressive Function. Journal of Immunology, 2005, 175, 7332-7340.	0.4	51
101	In vivo expansion of CD4+CD45RO-CD25+ T cells expressing foxP3 in IL-2-treated HIV-infected patients. Journal of Clinical Investigation, 2005, 115, 1839-1847.	3.9	109
102	Cutting Edge: IL-2 Is Critically Required for the In Vitro Activation of CD4+CD25+ T Cell Suppressor Function. Journal of Immunology, 2004, 172, 6519-6523.	0.4	488
103	Engagement of Glucocorticoid-Induced TNFR Family-Related Receptor on Effector T Cells by its Ligand Mediates Resistance to Suppression by CD4+CD25+ T Cells. Journal of Immunology, 2004, 173, 5008-5020.	0.4	443
104	Spontaneous Organ-Specific Th2-Mediated Autoimmunity in TCR Transgenic Mice. Journal of Immunology, 2004, 172, 2917-2924.	0.4	30
105	The Pathogenesis of Schistosomiasis Is Controlled by Cooperating IL-10-Producing Innate Effector and Regulatory T Cells. Journal of Immunology, 2004, 172, 3157-3166.	0.4	334
106	A novel protective model against experimental allergic encephalomyelitis in mice expressing a transgenic TCR-specific for myelin oligodendrocyte glycoprotein. Journal of Neuroimmunology, 2004, 149, 10-21.	1.1	12
107	Regulatory/suppressor T cells in health and disease. Arthritis and Rheumatism, 2004, 50, 2721-2724.	6.7	105
108	Activation requirements for the induction of CD4+CD25+ T cell suppressor function. European Journal of Immunology, 2004, 34, 366-376.	1.6	272

#	Article	IF	CITATIONS
109	Proliferative Assays for T Cell Function. Current Protocols in Immunology, 2004, 60, Unit 3.12.	3.6	76
110	Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Seminars in Immunology, 2004, 16, 81-88.	2.7	353
111	Tumor-Specific Human CD4+ Regulatory T Cells and Their Ligands. Immunity, 2004, 20, 107-118.	6.6	517
112	Control of T-cell responses by regulatory/suppressor T cells. Experimental Dermatology, 2003, 12, 913-914.	1.4	3
113	Control of T cell activation by CD4+CD25+ suppressor T cells. Novartis Foundation Symposium, 2003, 252, 24-36; discussion 36-44, 106-14.	1.2	20
114	Cutting Edge: Depletion of CD4+CD25+ Regulatory T Cells Is Necessary, But Not Sufficient, for Induction of Organ-Specific Autoimmune Disease. Journal of Immunology, 2002, 168, 5979-5983.	0.4	310
115	Constitutive Presentation of a Natural Tissue Autoantigen Exclusively by Dendritic Cells in the Draining Lymph Node. Journal of Experimental Medicine, 2002, 196, 1079-1090.	4.2	359
116	CD4+CD25+ Regulatory T Cells Can Mediate Suppressor Function in the Absence of Transforming Growth Factor β1 Production and Responsiveness. Journal of Experimental Medicine, 2002, 196, 237-246.	4.2	556
117	The role of suppressor T cells in regulation of immune responses. Journal of Allergy and Clinical Immunology, 2002, 110, 693-702.	1.5	168
118	CD4+CD25+ Immunoregulatory T Cells. Immunity, 2002, 16, 311-323.	6.6	1,297
119	The IL-10-producing competence of Th2 cells generated in vitro is IL-4 dependent. European Journal of Immunology, 2002, 32, 3216-3224.	1.6	28
120	CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature, 2002, 420, 502-507.	13.7	1,534
121	CD4+CD25+ suppressor T cells: more questions than answers. Nature Reviews Immunology, 2002, 2, 389-400.	10.6	1,968
122	Inhibition of the function of the FcgammaRIIB by a monoclonal antibody to thymic shared antigen-1, a Ly-6 family antigen. Immunology, 2001, 104, 28-36.	2.0	6
123	Control of T-cell activation by CD4+ CD25+ suppressor T cells. Immunological Reviews, 2001, 182, 58-67.	2.8	499
124	Control of organ-specific autoimmunity by immunoregulatory CD4+CD25+ T cells. Microbes and Infection, 2001, 3, 919-927.	1.0	57
125	Certified Professionals. Journal of Experimental Medicine, 2001, 193, F41-F46.	4.2	501
126	Cutting Edge: Control of CD8+ T Cell Activation by CD4+CD25+ Immunoregulatory Cells. Journal of Immunology, 2001, 167, 1137-1140.	0.4	648

#	Article	IF	CITATIONS
127	The costimulatory effect of IL-18 on the induction of antigen-specific IFN-Î ³ production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor β2 subunit. European Journal of Immunology, 2000, 30, 1113-1119.	1.6	139
128	Regulatory T Cells in Autoimmmunity. Annual Review of Immunology, 2000, 18, 423-449.	9.5	1,210
129	Suppressor Effector Function of CD4+CD25+ Immunoregulatory T Cells Is Antigen Nonspecific. Journal of Immunology, 2000, 164, 183-190.	0.4	1,097
130	The costimulatory effect of IL-18 on the induction of antigen-specific IFN-Î ³ production by resting T cells is IL-12 dependent and is mediated by up-regulation of the IL-12 receptor Î ² 2 subunit. , 2000, 30, 1113.		1
131	The critical role of IL-12 and the IL-12R?2 subunit in the generation of pathogenic autoreactive Th1 cells. Seminars in Immunopathology, 1999, 21, 249-262.	4.0	36
132	Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase- reactive T cells. European Journal of Immunology, 1999, 29, 669-677.	1.6	126
133	Post-thymectomy autoimmune gastritis: fine specificity and pathogenicity of anti-H/K ATPase- reactive T cells. , 1999, 29, 669.		5
134	Expression of Ly-6, a marker for highly malignant murine tumor cells, is regulated by growth conditions and stress. , 1998, 77, 306-313.		36
135	CD4+CD25+ Immunoregulatory T Cells Suppress Polyclonal T Cell Activation In Vitro by Inhibiting Interleukin 2 Production. Journal of Experimental Medicine, 1998, 188, 287-296.	4.2	2,323
136	An Interleukin (IL)-10/IL-12 Immunoregulatory Circuit Controls Susceptibility to Autoimmune Disease. Journal of Experimental Medicine, 1998, 187, 537-546.	4.2	425
137	T Lymphocyteâ€Mediated Control of Autoimmunity. Novartis Foundation Symposium, 1998, 215, 200-230.	1.2	29
138	Immune Deviation-the Third Dimension of Nondeletional T Cell Tolerance. Immunological Reviews, 1996, 149, 175-194.	2.8	80
139	Post-thymectomy autoimmunity: abnormal T-cell homeostasis. Trends in Immunology, 1995, 16, 61-67.	7.5	93
140	Activation of CD4+ T cells by delivery of the B7 costimulatory signal on bystander antigen-presenting cells (trans-costimulation). European Journal of Immunology, 1994, 24, 859-866.	1.6	81
141	Molecular characterization of the early activation antigen CD69: A type II membrane glycoprotein related to a family of natural killer cell activation antigens. European Journal of Immunology, 1993, 23, 1643-1648.	1.6	132
142	Influence of Prolactin and Growth Hormone on the Activation of Dwarf Mouse Lymphocytes In Vivo. Experimental Biology and Medicine, 1993, 204, 224-230.	1.1	35
143	Post-Thymectomy Organ-Specific Autoimmunity: Enhancement by Cyclosporine A and Inhibition by IL-2. Autoimmunity, 1993, 15, 55-59.	1.2	9
144	Infection breaks T-cell tolerance. Nature, 1992, 359, 79-82.	13.7	164

#	Article	IF	CITATIONS
145	Mouse autoreactive γ/δT cells I. Functional properties of autoreactive T cell hybridomas. European Journal of Immunology, 1992, 22, 483-489.	1.6	26
146	Mouse autoreactive γ/δT cells II. Molecular characterization of the T cell receptor. European Journal of Immunology, 1992, 22, 491-498.	1.6	26
147	Very Early (VEA) and Very Late (VLA) Activation Antigens have Distinct Functions in T Lymphocyte Activation. Immunological Reviews, 1989, 109, 153-176.	2.8	36
148	Characterization of T cell receptors on resident murine dendritic epidermal T cells. European Journal of Immunology, 1988, 18, 1323-1328.	1.6	67
149	Monoclonal antibodies identify three epitope clusters on the mouse p55 subunit of the interleukin 2 receptor: relationship to the interleukin 2-binding site. European Journal of Immunology, 1987, 17, 929-935.	1.6	90
150	Thy-1-mediated T-cell activation requires co-expression of CD3/Ti complex. Nature, 1987, 326, 505-507.	13.7	161
151	Thy-1 functions as a signal transduction molecule in T lymphocytes and transfected B lymphocytes. Nature, 1986, 322, 181-184.	13.7	188
152	Analysis of autoreactive I region-restricted T cell colonies isolated from the guinea pig syngeneic mixed leukocyte reaction and from immune responses to conventional foreign antigens. European Journal of Immunology, 1985, 15, 466-472.	1.6	25
153	Role of the Ly 1 antigen in interleukin 1-induced thymocyte activation. European Journal of Immunology, 1985, 15, 1007-1013.	1.6	26
154	Monoclonal Antibodies Directed Against Human la Antigens Detect an Evolutionary Conserved Epitope on Guinea Pig la Antigens With Unique Functional Properties. Journal of Leukocyte Biology, 1984, 35, 101-113.	1.5	3
155	The cellular compartmentalization of macrophage-associated nominal antigen: immunologically relevant macrophage-associated antigen may not require an intracellular phase of macrophage handling. European Journal of Immunology, 1983, 13, 810-815.	1.6	12
156	Nature of the antigenic complex recognized by T lymphocytes. VIII. Specific inhibition of the stimulatory capacity of antigen-pulsed hapten-modified peritoneal exudate cells by anti-hapten antibody. European Journal of Immunology, 1982, 12, 819-824.	1.6	10
157	Nature of the antigenic complex recognized by T lymphocytes. IX. Direct immunochemical demonstration of nominal antigen on the macrophage cell surface. European Journal of Immunology, 1982, 12, 825-831.	1.6	9
158	T-cell colonies recognize antigen in association with specific epitopes on la molecules. Nature, 1982, 295, 412-414.	13.7	33
159	Guinea pig la antigens are not derivatised on trinitrophenyl-modified cells. Nature, 1978, 274, 592-594.	13.7	10
160	T Lymphocyte Stimulation by Hapten-Conjugated Macrophages. A Model System for the Study of Immunocompetent Cell Interactions. Immunological Reviews, 1978, 40, 181-204.	2.8	66
161	The Role of Ia Antigens in T Cell Activation. Immunological Reviews, 1977, 35, 97-120.	2.8	109
162	Guinea-Pig Ia Antigens: Functional Significance and Chemical Characterization. Immunological Reviews, 1976, 30, 174-196.	2.8	16

10

#	Article	IF	CITATIONS
163	DISCUSSION PAPER: LOSS OF ANTIGENICITY ASSOCIATED WITH DELETION OF Ia ALLOANTIGENS IN A MUTANT LINE OF GUINEA PIG L2C LEUKEMIA. Annals of the New York Academy of Sciences, 1976, 276, 381-385.	1.8	0
164	Transplantation and preliminary characterisation of lymphocyte surface markers of Abelson virus-induced lymphomas. Nature, 1975, 253, 550-552.	13.7	78
165	ALLOANTISERUM-INDUCED INHIBITION OF IMMUNE RESPONSE GENE PRODUCT FUNCTION. Journal of Experimental Medicine, 1974, 139, 661-678.	4.2	21
166	ALLOANTISERUM-INDUCED INHIBITION OF MIGRATION INHIBITION FACTOR PRODUCTION IN IMMUNE RESPONSE GENE-CONTROLLED IMMUNE SYSTEMS. Journal of Experimental Medicine, 1974, 140, 383-395.	4.2	23
167	ALLOANTISERUM-INDUCED INHIBITION OF IMMUNE RESPONSE GENE PRODUCT FUNCTION. Journal of Experimental Medicine, 1974, 139, 679-695.	4.2	60
168	Receptors for Complement and Immunoglobulin on Human and Animal Lymphoid Cells. Immunological Reviews, 1973, 16, 3-28.	2.8	83
169	FUNCTION OF MACROPHAGES IN ANTIGEN RECOGNITION BY GUINEA PIG T LYMPHOCYTES. Journal of Experimental Medicine, 1973, 138, 1213-1229.	4.2	529
170	FUNCTION OF MACROPHAGES IN ANTIGEN RECOGNITION BY GUINEA PIG T LYMPHOCYTES. Journal of Experimental Medicine, 1973, 138, 1194-1212.	4.2	1,051
171	HISTOCOMPATIBILITY-LINKED IMMUNE RESPONSE GENE FUNCTION IN GUINEA PIGS. Journal of Experimental Medicine, 1972, 136, 1207-1221.	4.2	184
172	THE UROPOD-BEARING LYMPHOCYTE OF THE GUINEA PIG. Journal of Experimental Medicine, 1972, 135, 1037-1048.	4.2	54
173	Heterologous Antiserum to Thymus-derived Cells in the Guinea-pig. Nature: New Biology, 1972, 235, 19-21.	4.5	26