Simone Mastrogiovanni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950120/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 2016, 116, 241103.	7.8	2,701
2	Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 2016, 6, .	8.9	898
3	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2018, 21, 3.	26.7	808
4	Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Reviews in Relativity, 2020, 23, 3.	26.7	447
5	Increasing the Astrophysical Reach of the Advanced Virgo Detector via the Application of Squeezed Vacuum States of Light. Physical Review Letters, 2019, 123, 231108.	7.8	254
6	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	2.0	198
7	Upper Limits on the Stochastic Gravitational-Wave Background from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121101.	7.8	194
8	UPPER LIMITS ON THE RATES OF BINARY NEUTRON STAR AND NEUTRON STAR–BLACK HOLE MERGERS FROM ADVANCED LIGO'S FIRST OBSERVING RUN. Astrophysical Journal Letters, 2016, 832, L21.	8.3	146
9	A Standard Siren Measurement of the Hubble Constant from GW170817 without the Electromagnetic Counterpart. Astrophysical Journal Letters, 2019, 871, L13.	8.3	145
10	A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo. Astrophysical Journal, 2021, 909, 218.	4.5	144
11	First Search for Gravitational Waves from Known Pulsars with Advanced LIGO. Astrophysical Journal, 2017, 839, 12.	4.5	131
12	Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model. Physical Review X, 2016, 6, .	8.9	106
13	Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 2016, 94, .	4.7	102
14	Effects of waveform model systematics on the interpretation of GW150914. Classical and Quantum Gravity, 2017, 34, 104002.	4.0	98
15	Cosmological inference using gravitational wave standard sirens: A mock data analysis. Physical Review D, 2020, 101, .	4.7	95
16	Direct Constraints on the Ultralight Boson Mass from Searches of Continuous Gravitational Waves. Physical Review Letters, 2019, 123, 171101.	7.8	87
17	Directional Limits on Persistent Gravitational Waves from Advanced LIGO's First Observing Run. Physical Review Letters, 2017, 118, 121102.	7.8	84
18	The basic physics of the binary black hole merger GW150914. Annalen Der Physik, 2017, 529, 1600209.	2.4	69

#	Article	IF	CITATIONS
19	First targeted search for gravitational-wave bursts from core-collapse supernovae in data of first-generation laser interferometer detectors. Physical Review D, 2016, 94, .	4.7	60
20	Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B. Astrophysical Journal, 2017, 841, 89.	4.5	52
21	On the importance of source population models for gravitational-wave cosmology. Physical Review D, 2021, 104, .	4.7	48
22	Semicoherent analysis method to search for continuous gravitational waves emitted by ultralight boson clouds around spinning black holes. Physical Review D, 2018, 98, .	4.7	44
23	Calibration of advanced Virgo and reconstruction of the gravitational wave signal <i>h</i> (<i>t</i>) Tj ETQq1	1 0.78431 4.0	4 rgBT /Overi
24	Probing modified gravity theories and cosmology using gravitational-waves and associated electromagnetic counterparts. Physical Review D, 2020, 102, .	4.7	41
25	A morphology-independent search for gravitational wave echoes in data from the first and second observing runs of Advanced LIGO and Advanced Virgo. Physical Review D, 2020, 101, .	4.7	41
26	How effective is machine learning to detect long transient gravitational waves from neutron stars in a real search?. Physical Review D, 2019, 100, .	4.7	38
27	Comprehensive all-sky search for periodic gravitational waves in the sixth science run LIGO data. Physical Review D, 2016, 94, .	4.7	35
28	Quantum Backaction on Kg-Scale Mirrors: Observation of Radiation Pressure Noise in the Advanced Virgo Detector. Physical Review Letters, 2020, 125, 131101.	7.8	35
29	Comparison of methods for the detection of gravitational waves from unknown neutron stars. Physical Review D, 2016, 94, .	4.7	34
30	First low frequency all-sky search for continuous gravitational wave signals. Physical Review D, 2016, 93, .	4.7	32
31	Results of the deepest all-sky survey for continuous gravitational waves on LIGO S6 data running on the Einstein@Home volunteer distributed computing project. Physical Review D, 2016, 94, .	4.7	31
32	A new data analysis framework for the search of continuous gravitational wave signals. Classical and Quantum Gravity, 2019, 36, 015008.	4.0	31
33	Directed search for continuous gravitational-wave signals from the Galactic Center in the Advanced LIGO second observing run. Physical Review D, 2020, 101, .	4.7	29
34	Method to search for long duration gravitational wave transients from isolated neutron stars using the generalized frequency-Hough transform. Physical Review D, 2018, 98, .	4.7	28
35	Gravitational wave friction in light of GW170817 and GW190521. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 043-043.	5.4	24
36	First joint observation by the underground gravitational-wave detector KAGRA with GEO 600. Progress of Theoretical and Experimental Physics, 2022, 2022, .	6.6	20

#	Article	IF	CITATIONS
37	Gravitational wave observations, distance measurement uncertainties, and cosmology. Physical Review D, 2019, 100, .	4.7	17
38	Search for transient gravitational waves in coincidence with short-duration radio transients during 2007–2013. Physical Review D, 2016, 93, .	4.7	14
39	Establishing the significance of continuous gravitational-wave detections from known pulsars. Physical Review D, 2020, 102, .	4.7	13
40	An improved algorithm for narrow-band searches of continuous gravitational waves. Classical and Quantum Gravity, 2017, 34, 135007.	4.0	12
41	The potential role of binary neutron star merger afterglows in multimessenger cosmology. Astronomy and Astrophysics, 2021, 652, A1.	5.1	10
42	Novel directed search strategy to detect continuous gravitational waves from neutron stars in low- and high-eccentricity binary systems. Physical Review D, 2017, 95, .	4.7	9
43	Status of Advanced Virgo. EPJ Web of Conferences, 2018, 182, 02003.	0.3	9
44	The advanced Virgo longitudinal control system for the O2 observing run. Astroparticle Physics, 2020, 116, 102386.	4.3	9
45	Status of the Advanced Virgo gravitational wave detector. International Journal of Modern Physics A, 2017, 32, 1744003.	1.5	6
46	Phase decomposition of the template metric for continuous gravitational-wave searches. Physical Review D, 2018, 98, .	4.7	3
47	A resampling algorithm to detect continuous gravitational-wave signals from neutron stars in binary systems. Classical and Quantum Gravity, 2019, 36, 205015.	4.0	3
48	Sidereal filtering: A novel robust method to search for continuous gravitational waves. Physical Review D, 2021, 103, .	4.7	3
49	Measuring Cosmological Parameters with Gravitational Waves. , 2022, , 1821-1871.		0