Raquel SÃ;nchez Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950066/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evolution of fruit and seed traits during almond naturalization. Journal of Ecology, 2022, 110, 686-699.	4.0	1
2	Identification of early and late flowering time candidate genes in endodormant and ecodormant al ecodormant almond flower buds. Tree Physiology, 2021, 41, 589-605.	3.1	29
3	Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. Horticulture Research, 2021, 8, 15.	6.3	16
4	Dormancy release in almond by metabolomic analyses. Acta Horticulturae, 2021, , 343-350.	0.2	0
5	Advancing Endodormancy Release in Temperate Fruit Trees Using Agrochemical Treatments. Frontiers in Plant Science, 2021, 12, 812621.	3.6	9
6	Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. Horticulture Research, 2020, 7, 203.	6.3	19
7	Genomic Designing for New Climate-Resilient Almond Varieties. , 2020, , 1-21.		3
8	Mutation of a bHLH transcription factor allowed almond domestication. Science, 2019, 364, 1095-1098.	12.6	116
9	Editorial: From Functional Genomics to Biotechnology in Ornamental Plants. Frontiers in Plant Science, 2019, 10, 463.	3.6	2
10	Polymorphisms in cyanogenic glucoside and cyanoâ€amino acid content in natural accessions of common vetch (<i>Vicia sativa </i> L) and selection for improved agronomic performance. Plant Breeding, 2019, 138, 348-359.	1.9	5
11	Almond [Prunus dulcis (Miller) D.A. Webb] Breeding. , 2019, , 3-29.		3
12	\hat{I}^2 -Glucosidase activity in almond seeds. Plant Physiology and Biochemistry, 2018, 126, 163-172.	5.8	35
13	â€~Makako': a new extra-late flowering self-compatible cultivar from CEBAS-CSIC. Acta Horticulturae, 2018, , 9-12.	0.2	0
14	Penta and Makako: Two Extra-late Flowering Self-compatible Almond Cultivars from CEBAS-CSIC. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1700-1702.	1.0	7
15	Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (<i>Prunus dulcis</i>). Plant Physiology, 2018, 178, 1096-1111.	4.8	64
16	Synteny-Based Development of CAPS Markers Linked to the Sweet kernel LOCUS, Controlling Amygdalin Accumulation in Almond (Prunus dulcis (Mill.) D.A.Webb). Genes, 2018, 9, 385.	2.4	9
17	Bottom-Up Elucidation of Glycosidic Bond Stereochemistry. Analytical Chemistry, 2017, 89, 4540-4549.	6.5	64
18	Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. Frontiers in Plant Science, 2017, 8, 800.	3.6	52

#	Article	IF	CITATIONS
19	Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry. Frontiers in Plant Science, 2017, 8, 1233.	3.6	81
20	Chemical control of flowering time. Journal of Experimental Botany, 2016, 68, erw427.	4.8	48
21	A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 2015, 469, 375-389.	3.7	109
22	The origin of the self-compatible almond â€~Guara'. Scientia Horticulturae, 2015, 197, 1-4.	3.6	25
23	IDENTIFICATION AND CHARACTERIZATION OF PRUNASIN HYDROLASES IN SWEET AND BITTER ALMONDS AND THEIR EXPRESSION IN NICOTIANA BENTHAMIANA PLANTS. Acta Horticulturae, 2014, , 83-89.	0.2	2
24	Recent advancements to study flowering time in almond and other Prunus species. Frontiers in Plant Science, 2014, 5, 334.	3.6	48
25	Quantitative Trait Loci (QTL) and Mendelian Trait Loci (MTL) Analysis in Prunus: a Breeding Perspective and Beyond. Plant Molecular Biology Reporter, 2014, 32, 1-18.	1.8	82
26	BITTERNESS IN ALMOND. Acta Horticulturae, 2014, , 73-76.	0.2	0
27	VARIETAL TRACEABILITY IN ALMOND PRODUCTS BY SSR (SIMPLE SEQUENCE REPEAT) MARKERS. Acta Horticulturae, 2014, , 255-258.	0.2	2
28	Co-occurrence of cyanogenic glucosides and their derivatives as a common feature in metabolic profiles of almond and cassava. Planta Medica, 2014, 80, .	1.3	0
29	Comparative genomics analysis in <scp>P</scp> runoideae to identify biologically relevant polymorphisms. Plant Biotechnology Journal, 2013, 11, 883-893.	8.3	20
30	Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds Â. Plant Physiology, 2012, 158, 1916-1932.	4.8	40
31	Clarifying Omics Concepts, Challenges, and Opportunities for <i>Prunus</i> Breeding in the Postgenomic Era. OMICS A Journal of Integrative Biology, 2012, 16, 268-283.	2.0	32
32	Influence of the pollinizer in the amygdalin content of almonds. Scientia Horticulturae, 2012, 139, 62-65.	3.6	11
33	Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genetics and Genomes, 2012, 8, 379-389.	1.6	102
34	BREEDING LATE-FLOWERING ALMONDS IN THE CEBAS-CSIC, MURCIA, SPAIN. Acta Horticulturae, 2011, , 385-389.	0.2	2
35	TRANSMISSION OF CHILLING AND HEAT REQUIREMENTS FOR FLOWERING IN ALMOND AND DEVELOPMENT OF QTLS. Acta Horticulturae, 2011, , 539-543.	0.2	1
36	INFLUENCE OF THE POLLINATOR IN THE AMYGDALIN CONTENT OF ALMONDS. Acta Horticulturae, 2011, , 77-80.	0.2	0

Raquel SÃinchez Pérez

#	Article	IF	CITATIONS
37	Molecular markers for kernel bitterness in almond. Tree Genetics and Genomes, 2010, 6, 237-245.	1.6	49
38	Tissue and cellular localization of individual βâ€glycosidases using a substrateâ€specific sugar reducing assay. Plant Journal, 2009, 60, 894-906.	5.7	25
39	PENTA AND TARDONA: TWO NEW EXTRA-LATE FLOWERING SELF-COMPATIBLE ALMOND CULTIVARS. Acta Horticulturae, 2009, , 189-192.	0.2	13
40	CYANOGENIC GLUCOSIDE PATTERNS IN SWEET AND BITTER ALMONDS. Acta Horticulturae, 2009, , 481-486.	0.2	2
41	β-Glucosidases as detonators of plant chemical defense. Phytochemistry, 2008, 69, 1795-1813.	2.9	459
42	Bitterness in Almonds. Plant Physiology, 2008, 146, 1040-1052.	4.8	113
43	APPLICATION OF RECENT BIOTECHNOLOGIES IN THE CONSERVATION OF RARE FRUIT SPECIES FROM DEVELOPING COUNTRIES. Acta Horticulturae, 2008, , 191-196.	0.2	0
44	Almond. , 2007, , 229-242.		27
45	Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breeding, 2007, 126, 310-318.	1.9	93
46	Inheritance and relationships of important agronomic traits in almond. Euphytica, 2007, 155, 381-391.	1.2	47
47	Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: Implications for the assessment of genetic diversity and relatedness in almond. Scientia Horticulturae, 2006, 108, 310-316.	3.6	29
48	FRUIT DEVELOPMENT IN ALMOND. Acta Horticulturae, 2006, , 241-246.	0.2	4
49	Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochemistry Reviews, 2006, 5, 309-329.	6.5	122
50	Level and Transmission of Genetic Heterozygosity in Apricot (Prunus armeniaca L.) Explored Using Simple Sequence Repeat Markers. Genetic Resources and Crop Evolution, 2006, 53, 763-770.	1.6	21
51	SSR-BASED GENETIC DIVERSITY ASSESSMENT AMONG APRICOT CULTIVARS AND BREEDING LINES, AND ITS RELATIONSHIP WITH AGRONOMIC TRAITS. Acta Horticulturae, 2006, , 243-246.	0.2	Ο
52	CONSTRUCTION OF A LINKAGE MAP AND QTL ANALYSIS OF AGRONOMIC TRAITS IN ALMOND USING SSR MARKERS. Acta Horticulturae, 2006, , 89-92.	0.2	0
53	Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae, 2005, 103, 305-315.	3.6	59
54	Improved technique for counting chromosomes in almond. Scientia Horticulturae, 2005, 105, 139-143.	3.6	13

#	Article	IF	CITATIONS
55	MOLECULAR CHARACTERIZATION OF APRICOT CULTIVARS AND NEW BREEDING LINES USING SSRS. Acta Horticulturae, 2004, , 647-650.	0.2	Ο
56	Identification of S-alleles in almond using multiplex PCR. Euphytica, 2004, 138, 263-269.	1.2	39
57	ORIGIN OF ALMOND MULTIPLE EMBRYOS AND POTENTIAL UTILIZATION AS NEAR ISOGENIC LINES. Acta Horticulturae, 2004, , 819-822.	0.2	1
58	Characterization ofgdp1+as encoding a GDPase in the fission yeastSchizosaccharomyces pombe. FEMS Microbiology Letters, 2003, 228, 33-38.	1.8	7
59	IDENTIFICATION OF SELF-INCOMPATIBILITY ALLELES IN ALMOND AND RELATED PRUNUS SPECIES USING PCR. Acta Horticulturae, 2003, , 397-401.	0.2	17