Raquel SÃ;nchez Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950066/publications.pdf

Version: 2024-02-01

59 papers

2,181 citations

257450 24 h-index 233421 45 g-index

61 all docs

61 docs citations

61 times ranked

2363 citing authors

#	Article	IF	Citations
1	Î ² -Glucosidases as detonators of plant chemical defense. Phytochemistry, 2008, 69, 1795-1813.	2.9	459
2	Cyanogenic glycosides: a case study for evolution and application of cytochromes P450. Phytochemistry Reviews, 2006, 5, 309-329.	6.5	122
3	Mutation of a bHLH transcription factor allowed almond domestication. Science, 2019, 364, 1095-1098.	12.6	116
4	Bitterness in Almonds. Plant Physiology, 2008, 146, 1040-1052.	4.8	113
5	A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Biochemical Journal, 2015, 469, 375-389.	3.7	109
6	Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genetics and Genomes, 2012, 8, 379-389.	1.6	102
7	Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breeding, 2007, 126, 310-318.	1.9	93
8	Quantitative Trait Loci (QTL) and Mendelian Trait Loci (MTL) Analysis in Prunus: a Breeding Perspective and Beyond. Plant Molecular Biology Reporter, 2014, 32, 1-18.	1.8	82
9	Transcriptome and Metabolite Changes during Hydrogen Cyanamide-Induced Floral Bud Break in Sweet Cherry. Frontiers in Plant Science, 2017, 8, 1233.	3.6	81
10	Bottom-Up Elucidation of Glycosidic Bond Stereochemistry. Analytical Chemistry, 2017, 89, 4540-4549.	6.5	64
11	Elucidation of the Amygdalin Pathway Reveals the Metabolic Basis of Bitter and Sweet Almonds (<i>Prunus dulcis</i>). Plant Physiology, 2018, 178, 1096-1111.	4.8	64
12	Application of simple sequence repeat (SSR) markers in apricot breeding: molecular characterization, protection, and genetic relationships. Scientia Horticulturae, 2005, 103, 305-315.	3.6	59
13	Cyanogenic Glucosides and Derivatives in Almond and Sweet Cherry Flower Buds from Dormancy to Flowering. Frontiers in Plant Science, 2017, 8, 800.	3.6	52
14	Molecular markers for kernel bitterness in almond. Tree Genetics and Genomes, 2010, 6, 237-245.	1.6	49
15	Recent advancements to study flowering time in almond and other Prunus species. Frontiers in Plant Science, 2014, 5, 334.	3.6	48
16	Chemical control of flowering time. Journal of Experimental Botany, 2016, 68, erw427.	4.8	48
17	Inheritance and relationships of important agronomic traits in almond. Euphytica, 2007, 155, 381-391.	1.2	47
18	Prunasin Hydrolases during Fruit Development in Sweet and Bitter Almonds Â. Plant Physiology, 2012, 158, 1916-1932.	4.8	40

#	Article	IF	Citations
19	Identification of S-alleles in almond using multiplex PCR. Euphytica, 2004, 138, 263-269.	1.2	39
20	\hat{l}^2 -Glucosidase activity in almond seeds. Plant Physiology and Biochemistry, 2018, 126, 163-172.	5.8	35
21	Clarifying Omics Concepts, Challenges, and Opportunities for <i>Prunus</i> Breeding in the Postgenomic Era. OMICS A Journal of Integrative Biology, 2012, 16, 268-283.	2.0	32
22	Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: Implications for the assessment of genetic diversity and relatedness in almond. Scientia Horticulturae, 2006, 108, 310-316.	3.6	29
23	Identification of early and late flowering time candidate genes in endodormant and ecodormant almond flower buds. Tree Physiology, 2021, 41, 589-605.	3.1	29
24	Almond., 2007,, 229-242.		27
25	Tissue and cellular localization of individual βâ€glycosidases using a substrateâ€specific sugar reducing assay. Plant Journal, 2009, 60, 894-906.	5.7	25
26	The origin of the self-compatible almond â€~Guara'. Scientia Horticulturae, 2015, 197, 1-4.	3.6	25
27	Level and Transmission of Genetic Heterozygosity in Apricot (Prunus armeniaca L.) Explored Using Simple Sequence Repeat Markers. Genetic Resources and Crop Evolution, 2006, 53, 763-770.	1.6	21
28	Comparative genomics analysis in <scp>P</scp> runoideae to identify biologically relevant polymorphisms. Plant Biotechnology Journal, 2013, 11, 883-893.	8.3	20
29	Ascorbic acid and prunasin, two candidate biomarkers for endodormancy release in almond flower buds identified by a nontargeted metabolomic study. Horticulture Research, 2020, 7, 203.	6.3	19
30	IDENTIFICATION OF SELF-INCOMPATIBILITY ALLELES IN ALMOND AND RELATED PRUNUS SPECIES USING PCR. Acta Horticulturae, 2003, , 397-401.	0.2	17
31	Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight. Horticulture Research, 2021, 8, 15.	6.3	16
32	Improved technique for counting chromosomes in almond. Scientia Horticulturae, 2005, 105, 139-143.	3.6	13
33	PENTA AND TARDONA: TWO NEW EXTRA-LATE FLOWERING SELF-COMPATIBLE ALMOND CULTIVARS. Acta Horticulturae, 2009, , 189-192.	0.2	13
34	Influence of the pollinizer in the amygdalin content of almonds. Scientia Horticulturae, 2012, 139, 62-65.	3.6	11
35	Synteny-Based Development of CAPS Markers Linked to the Sweet kernel LOCUS, Controlling Amygdalin Accumulation in Almond (Prunus dulcis (Mill.) D.A.Webb). Genes, 2018, 9, 385.	2.4	9
36	Advancing Endodormancy Release in Temperate Fruit Trees Using Agrochemical Treatments. Frontiers in Plant Science, 2021, 12, 812621.	3.6	9

#	Article	lF	CITATIONS
37	Characterization ofgdp1+as encoding a GDPase in the fission yeastSchizosaccharomyces pombe. FEMS Microbiology Letters, 2003, 228, 33-38.	1.8	7
38	Penta and Makako: Two Extra-late Flowering Self-compatible Almond Cultivars from CEBAS-CSIC. Hortscience: A Publication of the American Society for Hortcultural Science, 2018, 53, 1700-1702.	1.0	7
39	Polymorphisms in cyanogenic glucoside and cyanoâ€amino acid content in natural accessions of common vetch (<i>Vicia sativa </i> L.) and selection for improved agronomic performance. Plant Breeding, 2019, 138, 348-359.	1.9	5
40	FRUIT DEVELOPMENT IN ALMOND. Acta Horticulturae, 2006, , 241-246.	0.2	4
41	Almond [Prunus dulcis (Miller) D.A. Webb] Breeding. , 2019, , 3-29.		3
42	Genomic Designing for New Climate-Resilient Almond Varieties. , 2020, , 1-21.		3
43	CYANOGENIC GLUCOSIDE PATTERNS IN SWEET AND BITTER ALMONDS. Acta Horticulturae, 2009, , 481-486.	0.2	2
44	BREEDING LATE-FLOWERING ALMONDS IN THE CEBAS-CSIC, MURCIA, SPAIN. Acta Horticulturae, 2011, , 385-389.	0.2	2
45	IDENTIFICATION AND CHARACTERIZATION OF PRUNASIN HYDROLASES IN SWEET AND BITTER ALMONDS AND THEIR EXPRESSION IN NICOTIANA BENTHAMIANA PLANTS. Acta Horticulturae, 2014, , 83-89.	0.2	2
46	VARIETAL TRACEABILITY IN ALMOND PRODUCTS BY SSR (SIMPLE SEQUENCE REPEAT) MARKERS. Acta Horticulturae, 2014, , 255-258.	0.2	2
47	Editorial: From Functional Genomics to Biotechnology in Ornamental Plants. Frontiers in Plant Science, 2019, 10, 463.	3.6	2
48	TRANSMISSION OF CHILLING AND HEAT REQUIREMENTS FOR FLOWERING IN ALMOND AND DEVELOPMENT OF QTLS. Acta Horticulturae, 2011, , 539-543.	0.2	1
49	ORIGIN OF ALMOND MULTIPLE EMBRYOS AND POTENTIAL UTILIZATION AS NEAR ISOGENIC LINES. Acta Horticulturae, 2004, , 819-822.	0.2	1
50	Evolution of fruit and seed traits during almond naturalization. Journal of Ecology, 2022, 110, 686-699.	4.0	1
51	MOLECULAR CHARACTERIZATION OF APRICOT CULTIVARS AND NEW BREEDING LINES USING SSRS. Acta Horticulturae, 2004, , 647-650.	0.2	0
52	APPLICATION OF RECENT BIOTECHNOLOGIES IN THE CONSERVATION OF RARE FRUIT SPECIES FROM DEVELOPING COUNTRIES. Acta Horticulturae, 2008, , 191-196.	0.2	0
53	BITTERNESS IN ALMOND. Acta Horticulturae, 2014, , 73-76.	0.2	0
54	â€~Makako': a new extra-late flowering self-compatible cultivar from CEBAS-CSIC. Acta Horticulturae, 2018, , 9-12.	0.2	0

#	Article	IF	CITATIONS
55	Dormancy release in almond by metabolomic analyses. Acta Horticulturae, 2021, , 343-350.	0.2	О
56	SSR-BASED GENETIC DIVERSITY ASSESSMENT AMONG APRICOT CULTIVARS AND BREEDING LINES, AND ITS RELATIONSHIP WITH AGRONOMIC TRAITS. Acta Horticulturae, 2006, , 243-246.	0.2	0
57	CONSTRUCTION OF A LINKAGE MAP AND QTL ANALYSIS OF AGRONOMIC TRAITS IN ALMOND USING SSR MARKERS. Acta Horticulturae, 2006, , 89-92.	0.2	O
58	INFLUENCE OF THE POLLINATOR IN THE AMYGDALIN CONTENT OF ALMONDS. Acta Horticulturae, $2011, , 77-80.$	0.2	0
59	Co-occurrence of cyanogenic glucosides and their derivatives as a common feature in metabolic profiles of almond and cassava. Planta Medica, 2014, 80, .	1.3	0