Yinyan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7950021/publications.pdf

Version: 2024-02-01

83 papers	2,828 citations	26 h-index	197818 49 g-index
86	86	86	3413
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	CGCG clinical practice guidelines for the management of adult diffuse gliomas. Cancer Letters, 2016, 375, 263-273.	7.2	448
2	Clinical practice guidelines for the management of adult diffuse gliomas. Cancer Letters, 2021, 499, 60-72.	7.2	194
3	Localizing seizure-susceptible brain regions associated with low-grade gliomas using voxel-based lesion-symptom mapping. Neuro-Oncology, 2015, 17, 282-288.	1.2	151
4	A radiomic signature as a non-invasive predictor of progression-free survival in patients with lower-grade gliomas. NeuroImage: Clinical, 2018, 20, 1070-1077.	2.7	145
5	Automatic assessment of glioma burden: a deep learning algorithm for fully automated volumetric and bidimensional measurement. Neuro-Oncology, 2019, 21, 1412-1422.	1.2	128
6	IDH mutation and MGMT promoter methylation in glioblastoma: results of a prospective registry. Oncotarget, 2015, 6, 40896-40906.	1.8	116
7	Classification based on mutations of <i>TERT </i> promoter and <i>IDH </i> characterizes subtypes in grade II/III gliomas. Neuro-Oncology, 2016, 18, 1099-1108.	1.2	93
8	Genotype prediction of ATRX mutation in lower-grade gliomas using an MRI radiomics signature. European Radiology, 2018, 28, 2960-2968.	4.5	91
9	MRI features predict p53 status in lower-grade gliomas via a machine-learning approach. Neurolmage: Clinical, 2018, 17, 306-311.	2.7	85
10	Radiomics analysis allows for precise prediction of epilepsy in patients with low-grade gliomas. NeuroImage: Clinical, 2018, 19, 271-278.	2.7	67
11	Prognostic value of a microRNA signature as a novel biomarker in patients with lower-grade gliomas. Journal of Neuro-Oncology, 2018, 137, 127-137.	2.9	66
12	Identification of a 6-Cytokine Prognostic Signature in Patients with Primary Glioblastoma Harboring M2 Microglia/Macrophage Phenotype Relevance. PLoS ONE, 2015, 10, e0126022.	2.5	59
13	Relationship between necrotic patterns in glioblastoma and patient survival: fractal dimension and lacunarity analyses using magnetic resonance imaging. Scientific Reports, 2017, 7, 8302.	3.3	55
14	Molecular and clinical characterization of IDH associated immune signature in lower-grade gliomas. Oncolmmunology, 2018, 7, e1434466.	4.6	53
15	IDH mutation-specific radiomic signature in lower-grade gliomas. Aging, 2019, 11, 673-696.	3.1	51
16	Radiological features combined with <i>IDH1</i> status for predicting the survival outcome of glioblastoma patients. Neuro-Oncology, 2016, 18, 589-597.	1.2	48
17	Radiomic features predict Ki-67 expression level and survival in lower grade gliomas. Journal of Neuro-Oncology, 2017, 135, 317-324.	2.9	48
18	Correlation of preoperative seizures with clinicopathological factors and prognosis in anaplastic gliomas: A report of 198 patients from China. Seizure: the Journal of the British Epilepsy Association, 2014, 23, 844-851.	2.0	39

#	Article	IF	CITATIONS
19	IDH1 mutation is associated with a higher preoperative seizure incidence in low-grade glioma: A systematic review and meta-analysis. Seizure: the Journal of the British Epilepsy Association, 2018, 55, 76-82.	2.0	38
20	The prognostic value of maximal surgical resection is attenuated in oligodendroglioma subgroups of adult diffuse glioma: a multicenter retrospective study. Journal of Neuro-Oncology, 2018, 140, 591-603.	2.9	38
21	PD-1 related transcriptome profile and clinical outcome in diffuse gliomas. Oncolmmunology, 2018, 7, e1382792.	4.6	37
22	Multidimensional analysis of gene expression reveals TGFB1I1-induced EMT contributes to malignant progression of astrocytomas. Oncotarget, 2014, 5, 12593-12606.	1.8	36
23	Anatomical Involvement of the Subventricular Zone Predicts Poor Survival Outcome in Low-Grade Astrocytomas. PLoS ONE, 2016, 11, e0154539.	2.5	35
24	Clinical characteristics associated with postoperative seizure control in adult low-grade gliomas: a systematic review and meta-analysis. Neuro-Oncology, 2018, 20, 324-331.	1.2	32
25	Molecular subtyping of diffuse gliomas using magnetic resonance imaging: comparison and correlation between radiomics and deep learning. European Radiology, 2022, 32, 747-758.	4.5	31
26	Radiogenomics of lower-grade gliomas: a radiomic signature as a biological surrogate for survival prediction. Aging, 2018, 10, 2884-2899.	3.1	29
27	ALDH1A3: A Marker of Mesenchymal Phenotype in Gliomas Associated with Cell Invasion. PLoS ONE, 2015, 10, e0142856.	2.5	28
28	ADAM9 Expression Is Associate with Glioma Tumor Grade and Histological Type, and Acts as a Prognostic Factor in Lower-Grade Gliomas. International Journal of Molecular Sciences, 2016, 17, 1276.	4.1	27
29	Tumor border sharpness correlates with HLA-G expression in low-grade gliomas. Journal of Neuroimmunology, 2015, 282, 1-6.	2.3	24
30	The Influence of Frontal Lobe Tumors and Surgical Treatment on Advanced Cognitive Functions. World Neurosurgery, 2016, 91, 340-346.	1.3	23
31	Putamen involvement and survival outcomes in patients with insular low-grade gliomas. Journal of Neurosurgery, 2016, 126, 1788-1794.	1.6	22
32	Anatomical specificity of O6-methylguanine DNA methyltransferase protein expression in glioblastomas. Journal of Neuro-Oncology, 2014, 120, 331-337.	2.9	21
33	Radiogenomic analysis of PTEN mutation in glioblastoma using preoperative multi-parametric magnetic resonance imaging. Neuroradiology, 2019, 61, 1229-1237.	2.2	21
34	Radiogenomic analysis of vascular endothelial growth factor in patients with diffuse gliomas. Cancer Imaging, 2019, 19, 68.	2.8	20
35	Predicting the Type of Tumor-Related Epilepsy in Patients With Low-Grade Gliomas: A Radiomics Study. Frontiers in Oncology, 2020, 10, 235.	2.8	19
36	Identifying the association between contrast enhancement pattern, surgical resection, and prognosis in anaplastic glioma patients. Neuroradiology, 2016, 58, 367-374.	2.2	18

3

#	Article	IF	Citations
37	Prognostic Factors in Clival Chordomas: An Integrated Analysis of 347 Patients. World Neurosurgery, 2018, 118, e375-e387.	1.3	18
38	MR imaging based fractal analysis for differentiating primary CNS lymphoma and glioblastoma. European Radiology, 2019, 29, 1348-1354.	4.5	18
39	Reduced expression of DNA repair genes and chemosensitivity in 1p19q codeleted lower-grade gliomas. Journal of Neuro-Oncology, 2018, 139, 563-571.	2.9	17
40	Deficiency of very large G-protein-coupled receptor-1 is a risk factor of tumor-related epilepsy: a whole transcriptome sequencing analysis. Journal of Neuro-Oncology, 2015, 121, 609-616.	2.9	16
41	Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET. NeuroImage: Clinical, 2016, 12, 415-419.	2.7	15
42	Voxel-based comparison of brain glucose metabolism between patients with Cushing's disease and healthy subjects. Neurolmage: Clinical, 2018, 17, 354-358.	2.7	15
43	Glioma-related epilepsy in patients with diffuse high-grade glioma after the 2016 WHO update: seizure characteristics, risk factors, and clinical outcomes. Journal of Neurosurgery, 2022, 136, 67-75.	1.6	15
44	Personalized <scp>fMRI</scp> Delineates Functional Regions Preserved within Brain Tumors. Annals of Neurology, 2022, 91, 353-366.	5. 3	14
45	Age-associated brain regions in gliomas: a volumetric analysis. Journal of Neuro-Oncology, 2015, 123, 299-306.	2.9	13
46	Assessment of care pattern and outcome in hemangioblastoma. Scientific Reports, 2018, 8, 11144.	3.3	13
47	Awake craniotomy for gliomas involving motor-related areas: classification and function recovery. Journal of Neuro-Oncology, 2020, 148, 317-325.	2.9	13
48	Radiomics Features Predict Telomerase Reverse Transcriptase Promoter Mutations in World Health Organization Grade II Gliomas via a Machine-Learning Approach. Frontiers in Oncology, 2020, 10, 606741.	2.8	13
49	Human leukocyte antigen-G overexpression predicts poor clinical outcomes in low-grade gliomas. Journal of Neuroimmunology, 2016, 294, 27-31.	2.3	11
50	Radiomics Analysis of Postoperative Epilepsy Seizures in Low-Grade Gliomas Using Preoperative MR Images. Frontiers in Oncology, 2020, 10, 1096.	2.8	11
51	Tumor location-based classification of surgery-related language impairments in patients with glioma. Journal of Neuro-Oncology, 2021, 155, 143-152.	2.9	11
52	Molecular subtype impacts surgical resection in low-grade gliomas: A Chinese Glioma Genome Atlas database analysis. Cancer Letters, 2021, 522, 14-21.	7.2	10
53	Brain regions associated with telomerase reverse transcriptase promoter mutations in primary glioblastomas. Journal of Neuro-Oncology, 2016, 128, 455-462.	2.9	9
54	Molecular profiles of tumor contrast enhancement: A radiogenomic analysis in anaplastic gliomas. Cancer Medicine, 2018, 7, 4273-4283.	2.8	9

#	Article	IF	CITATIONS
55	A Novel Sequence: ZOOMit-Blood Oxygen Level-Dependent for Motor-Cortex Localization. Neurosurgery, 2020, 86, E124-E132.	1.1	9
56	Role of molecular biomarkers in glioma resection: a systematic review. Chinese Neurosurgical Journal, 2020, 6, 18.	0.9	9
57	Ischemic Infarction of Pituitary Apoplexy: A Retrospective Study of 46 Cases From a Single Tertiary Center. Frontiers in Neuroscience, 2021, 15, 808111.	2.8	9
58	Anatomical localization of p53 mutated tumors: A radiographic study of human glioblastomas. Journal of the Neurological Sciences, 2014, 346, 94-98.	0.6	8
59	Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis. Neuroradiology, 2016, 58, 69-75.	2.2	8
60	Epilepsy enhance global efficiency of language networks in right temporal lobe gliomas. CNS Neuroscience and Therapeutics, 2021, 27, 363-371.	3.9	8
61	Preoperative Radiomics Analysis of $1p/19q$ Status in WHO Grade II Gliomas. Frontiers in Oncology, 2021, 11, 616740.	2.8	8
62	Identifying radiographic specificity for phosphatase and tensin homolog and epidermal growth factor receptor changes: a quantitative analysis of glioblastomas. Neuroradiology, 2014, 56, 1113-1120.	2.2	7
63	Identifying the Association of Contrast Enhancement with Vascular Endothelia Growth Factor Expression in Anaplastic Gliomas: A Volumetric Magnetic Resonance Imaging Analysis. PLoS ONE, 2015, 10, e0121380.	2.5	7
64	Molecular profiles for insular low-grade gliomas with putamen involvement. Journal of Neuro-Oncology, 2018, 138, 659-666.	2.9	7
65	Regional specificity of $1p/19q$ co-deletion combined with radiological features for predicting the survival outcomes of anaplastic oligodendroglial tumor patients. Journal of Neuro-Oncology, 2018, 136, 523-531.	2.9	7
66	Contralesional functional network reorganization of the insular cortex in diffuse low-grade glioma patients. Scientific Reports, 2021, 11, 623.	3.3	7
67	Association of tumor growth rates with molecular biomarker status: a longitudinal study of high-grade glioma. Aging, 2020, 12, 7908-7926.	3.1	6
68	Epilepsy-related white matter network changes in patients with frontal lobe glioma. Journal of Neuroradiology, 2023, 50, 258-265.	1.1	6
69	Comparison of Radiation Therapy Alone and Chemotherapy Alone for Low-Grade Gliomas without Surgical Resection. World Neurosurgery, 2019, 122, e108-e120.	1.3	5
70	Characteristic Alterations of Network in Patients With Intraoperative Stimulation-Induced Seizures During Awake Craniotomy. Frontiers in Neurology, 2021, 12, 602716.	2.4	5
71	Decreasing Shortest Path Length of the Sensorimotor Network Induces Frontal Glioma-Related Epilepsy. Frontiers in Oncology, 2022, 12, 840871.	2.8	5
72	Motor cortex gliomas induces microstructural changes of large fiber tracts revealed by TBSS. Scientific Reports, 2020, 10, 16900.	3.3	4

#	Article	IF	CITATIONS
73	Long-term efficacy of surgical resection with or without adjuvant therapy for treatment of secondary glioblastoma in adults. Neuro-Oncology Advances, 2020, 2, vdaa098.	0.7	4
74	Microstructural changes of white matter fiber tracts induced by insular glioma revealed by tract-based spatial statistics and automatic fiber quantification. Scientific Reports, 2022, 12, 2685.	3.3	4
75	New-Onset Postoperative Seizures in Patients With Diffuse Gliomas: A Risk Assessment Analysis. Frontiers in Neurology, 2021, 12, 682535.	2.4	3
76	Topological Characteristics Associated with Intraoperative Stimulation Related Epilepsy of Glioma Patients: A DTI Network Study. Brain Sciences, 2022, 12, 60.	2.3	3
77	Increasing nodal vulnerability and nodal efficiency implied recovery time prolonging in patients with supplementary motor area syndrome. Human Brain Mapping, 2022, , .	3.6	3
78	Response to "Association of IDH1/2 mutation with preoperative seizure in low-grade gliomas: How strong is the evidence?― Epilepsy Research, 2015, 115, 145-146.	1.6	2
79	Classification of brain arteriovenous malformations located in motor-related areas based on location and anterior choroidal artery feeding. Stroke and Vascular Neurology, 2021, 6, 441-448.	3.3	2
80	Radiation combined with temozolomide contraindicated for young adults diagnosed with anaplastic glioma. Oncotarget, 2016, 7, 80091-80100.	1.8	2
81	Expression changes in ion channel and immunity genes are associated with glioma-related epilepsy in patients with diffuse gliomas. Journal of Cancer Research and Clinical Oncology, 2022, 148, 2793-2802.	2.5	2
82	Contralesional Sensorimotor Network Participates in Motor Functional Compensation in Glioma Patients. Frontiers in Oncology, 2022, 12, 882313.	2.8	1
83	In Reply to the Letter to the Editor "Tumor-Induced Brain Plasticity: Challenging Theories on the Neural Basis for Language― World Neurosurgery, 2017, 98, 845.	1.3	O