Bryan G Fry

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/794948/publications.pdf

Version: 2024-02-01

57758 53230 8,140 143 44 85 citations h-index g-index papers 145 145 145 4617 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Novel Neurotoxic Activity in Calliophis intestinalis Venom. Neurotoxicity Research, 2022, 40, 173-178.	2.7	3
2	Dynamic genetic differentiation drives the widespread structural and functional convergent evolution of snake venom proteinaceous toxins. BMC Biology, 2022, 20, 4.	3.8	17
3	Efficacy and Limitations of Chemically Diverse Small-Molecule Enzyme-Inhibitors against the Synergistic Coagulotoxic Activities of Bitis Viper Venoms. Molecules, 2022, 27, 1733.	3.8	3
4	Cloud serpent coagulotoxicity: The biochemical mechanisms underpinning the anticoagulant actions of Mixcoatlus and Ophryacus venoms. Toxicon, 2022, 211, 44-49.	1.6	2
5	Differential coagulotoxic and neurotoxic venom activity from species of the arboreal viperid snake genus Bothriechis (palm-pitvipers). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 256, 109326.	2.6	6
6	Clinical and Evolutionary Implications of Dynamic Coagulotoxicity Divergences in Bothrops (Lancehead Pit Viper) Venoms. Toxins, 2022, 14, 297.	3.4	8
7	Convergent evolution of toxin resistance in animals. Biological Reviews, 2022, 97, 1823-1843.	10.4	20
8	Editorial: Venoms and Toxins: Functional Omics and Pharmacological Insights. Frontiers in Pharmacology, 2022, 13, 887513.	3.5	0
9	The relative efficacy of chemically diverse small-molecule enzyme-inhibitors against anticoagulant activities of Black Snake (Pseudechis spp.) venoms. Toxicology Letters, 2022, 366, 26-32.	0.8	1
10	Untangling interactions between Bitis vipers and their prey using coagulotoxicity against diverse vertebrate plasmas. Toxicon, 2022, 216, 37-44.	1.6	0
11	Anticoagulant Micrurus venoms: Targets and neutralization. Toxicology Letters, 2021, 337, 91-97.	0.8	14
12	Utilising venom activity to infer dietary composition of the Kenyan horned viper (Bitis worthingtoni). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2021, 240, 108921.	2.6	9
13	Electrostatic resistance to alpha-neurotoxins conferred by charge reversal mutations in nicotinic acetylcholine receptors. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202703.	2.6	14
14	ERK and mTORC1 Inhibitors Enhance the Anti-Cancer Capacity of the Octpep-1 Venom-Derived Peptide in Melanoma BRAF(V600E) Mutations. Toxins, 2021, 13, 146.	3.4	7
15	Extensive Variation in the Activities of Pseudocerastes and Eristicophis Viper Venoms Suggests Divergent Envenoming Strategies Are Used for Prey Capture. Toxins, 2021, 13, 112.	3.4	10
16	Electric Blue: Molecular Evolution of Three-Finger Toxins in the Long-Glanded Coral Snake Species Calliophis bivirgatus. Toxins, 2021, 13, 124.	3.4	9
17	Not Goanna Get Me: Mutations in the Savannah Monitor Lizard (Varanus exanthematicus) Nicotinic Acetylcholine Receptor Confer Reduced Susceptibility to SympatricÂCobra Venoms. Neurotoxicity Research, 2021, 39, 1116-1122.	2.7	11
18	A Clot Twist: Extreme Variation in Coagulotoxicity Mechanisms in Mexican Neotropical Rattlesnake Venoms. Frontiers in Immunology, 2021, 12, 612846.	4.8	18

#	Article	IF	Citations
19	Clinical implications of differential procoagulant toxicity of the palearctic viperid genus Macrovipera, and the relative neutralization efficacy of antivenoms and enzyme inhibitors. Toxicology Letters, 2021, 340, 77-88.	0.8	16
20	Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, <i>Doratifera vulnerans</i> Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
21	Clinical implications of ontogenetic differences in the coagulotoxic activity of Bothrops jararacussu venoms. Toxicology Letters, 2021, 348, 59-72.	0.8	10
22	Pharmacological Characterisation of Pseudocerastes and Eristicophis Viper Venoms Reveal Anticancer (Melanoma) Properties and a Potentially Novel Mode of Fibrinogenolysis. International Journal of Molecular Sciences, 2021, 22, 6896.	4.1	9
23	Venom-Induced Blood Disturbances by Palearctic Viperid Snakes, and Their Relative Neutralization by Antivenoms and Enzyme-Inhibitors. Frontiers in Immunology, 2021, 12, 688802.	4.8	16
24	BoaγPLI from Boa constrictor Blood is a Broad-Spectrum Inhibitor of Venom PLA2 Pathophysiological Actions. Journal of Chemical Ecology, 2021, 47, 907-914.	1.8	3
25	Mutual enlightenment: A toolbox of concepts and methods for integrating evolutionary and clinical toxinology via snake venomics and the contextual stance. Toxicon: X, 2021, 9-10, 100070.	2.9	21
26	A symphony of destruction: Dynamic differential fibrinogenolytic toxicity by rattlesnake (Crotalus) Tj ETQq0 0 () rgBT /Ov€ 2.6	erlock 10 Tf 50 7
27	The Dragon's Paralysing Spell: Evidence of Sodium and Calcium Ion Channel Binding Neurotoxins in Helodermatid and Varanid Lizard Venoms. Toxins, 2021, 13, 549.	3.4	3
28	Evidence for Resistance to Coagulotoxic Effects of Australian Elapid Snake Venoms by Sympatric Prey (Blue Tongue Skinks) but Not by Predators (Monitor Lizards). Toxins, 2021, 13, 590.	3.4	4
29	Getting stoned: Characterisation of the coagulotoxic and neurotoxic effects of reef stonefish (Synanceia verrucosa) venom. Toxicology Letters, 2021, 346, 16-22.	0.8	9
30	Widespread and Differential Neurotoxicity in Venoms from the Bitis Genus of Viperid Snakes. Neurotoxicity Research, 2021, 39, 697-704.	2.7	11
31	Pan-American Lancehead Pit-Vipers: Coagulotoxic Venom Effects and Antivenom Neutralisation of Bothrops asper and B. atrox Geographical Variants. Toxins, 2021, 13, 78.	3.4	15
32	Role of Phospholipases A2 in Vascular Relaxation and Sympatholytic Effects of Five Australian Brown Snake, Pseudonaja spp., Venoms in Rat Isolated Tissues. Frontiers in Pharmacology, 2021, 12, 754304.	3.5	7
33	The Relative Efficacy of Chemically Diverse Small-Molecule Enzyme-Inhibitors Against Anticoagulant Activities of African Spitting Cobra (Naja Species) Venoms. Frontiers in Immunology, 2021, 12, 752442.	4.8	14
34	Taxon-selective venom variation in adult and neonate Daboia russelii (Russell's Viper), and antivenom efficacy. Toxicon, 2021, 205, 11-19.	1.6	1
35	Monkeying around with venom: an increased resistance to $\hat{l}\pm$ -neurotoxins supports an evolutionary arms race between Afro-Asian primates and sympatric cobras. BMC Biology, 2021, 19, 253.	3.8	11
36	A Genus-Wide Bioactivity Analysis of Daboia (Viperinae: Viperidae) Viper Venoms Reveals Widespread Variation in Haemotoxic Properties. International Journal of Molecular Sciences, 2021, 22, 13486.	4.1	6

#	Article	lF	Citations
37	The sweet side of venom: Glycosylated prothrombin activating metalloproteases from Dispholidus typus (boomslang) and Thelotornis mossambicanus (twig snake). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 227, 108625.	2.6	11
38	Widespread Evolution of Molecular Resistance to Snake Venom α-Neurotoxins in Vertebrates. Toxins, 2020, 12, 638.	3.4	21
39	Differential coagulotoxicity of metalloprotease isoforms from Bothrops neuwiedi snake venom and consequent variations in antivenom efficacy. Toxicology Letters, 2020, 333, 211-221.	0.8	10
40	Australian funnel-web spiders evolved human-lethal Î-hexatoxins for defense against vertebrate predators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24920-24928.	7.1	32
41	How the Toxin got its Toxicity. Frontiers in Pharmacology, 2020, 11, 574925.	3.5	20
42	Assessing the Binding of Venoms from Aquatic Elapids to the Nicotinic Acetylcholine Receptor Orthosteric Site of Different Prey Models. International Journal of Molecular Sciences, 2020, 21, 7377.	4.1	12
43	Evolutionary Interpretations of Nicotinic Acetylcholine Receptor Targeting Venom Effects by a Clade of Asian Viperidae Snakes. Neurotoxicity Research, 2020, 38, 312-318.	2.7	19
44	Pets in peril: The relative susceptibility of cats and dogs to procoagulant snake venoms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 236, 108769.	2.6	4
45	Trimeresurus albolabris snakebite treatment implications arising from ontogenetic venom comparisons of anticoagulant function, and antivenom efficacy. Toxicology Letters, 2020, 327, 2-8.	0.8	12
46	Causes and Consequences of Snake Venom Variation. Trends in Pharmacological Sciences, 2020, 41, 570-581.	8.7	185
47	Varespladib (LY315920) neutralises phospholipase A2 mediated prothrombinase-inhibition induced by Bitis snake venoms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2020, 236, 108818.	2.6	28
48	Functional venomics of the Big-4 snakes of Pakistan. Toxicon, 2020, 179, 60-71.	1.6	10
49	A symmetry or asymmetry: Functional and compositional comparison of venom from the left and right glands of the Indochinese spitting cobra (Naja siamensis). Toxicon: X, 2020, 7, 100050.	2.9	3
50	A Web of Coagulotoxicity: Failure of Antivenom to Neutralize the Destructive (Non-Clotting) Fibrinogenolytic Activity of Loxosceles and Sicarius Spider Venoms. Toxins, 2020, 12, 91.	3.4	11
51	The Toxicological Intersection between Allergen and Toxin: A Structural Comparison of the Cat Dander Allergenic Protein Fel d1 and the Slow Loris Brachial Gland Secretion Protein. Toxins, 2020, 12, 86.	3.4	9
52	An Appetite for Destruction: Detecting Prey-Selective Binding of \hat{l}_{\pm} -Neurotoxins in the Venom of Afro-Asian Elapids. Toxins, 2020, 12, 205.	3.4	32
53	Anticoagulant activity of black snake (Elapidae: Pseudechis) venoms: Mechanisms, potency, and antivenom efficacy. Toxicology Letters, 2020, 330, 176-184.	0.8	20
54	Clinical implications of coagulotoxic variations in Mamushi (Viperidae: Gloydius) snake venoms. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2019, 225, 108567.	2.6	22

#	Article	IF	CITATIONS
55	Venomous Landmines: Clinical Implications of Extreme Coagulotoxic Diversification and Differential Neutralization by Antivenom of Venoms within the Viperid Snake Genus Bitis. Toxins, 2019, 11, 422.	3.4	25
56	A Taxon-Specific and High-Throughput Method for Measuring Ligand Binding to Nicotinic Acetylcholine Receptors. Toxins, 2019, 11, 600.	3.4	29
57	Vampire Venom: Vasodilatory Mechanisms of Vampire Bat (Desmodus rotundus) Blood Feeding. Toxins, 2019, 11, 26.	3.4	11
58	Snake Venom in Context: Neglected Clades and Concepts. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	43
59	Clinical implications of convergent procoagulant toxicity and differential antivenom efficacy in Australian elapid snake venoms. Toxicology Letters, 2019, 316, 171-182.	0.8	20
60	Clinical implications of differential antivenom efficacy in neutralising coagulotoxicity produced by venoms from species within the arboreal viperid snake genus Trimeresurus. Toxicology Letters, 2019, 316, 35-48.	0.8	27
61	Differential destructive (non-clotting) fibrinogenolytic activity in Afro-Asian elapid snake venoms and the links to defensive hooding behavior. Toxicology in Vitro, 2019, 60, 330-335.	2.4	18
62	Varanid Lizard Venoms Disrupt the Clotting Ability of Human Fibrinogen through Destructive Cleavage. Toxins, 2019, 11, 255.	3.4	14
63	Coagulotoxic effects by brown snake (Pseudonaja) and taipan (Oxyuranus) venoms, and the efficacy of a new antivenom. Toxicology in Vitro, 2019, 58, 97-109.	2.4	30
64	Basal but divergent: Clinical implications of differential coagulotoxicity in a clade of Asian vipers. Toxicology in Vitro, 2019, 58, 195-206.	2.4	30
65	Solenodon genome reveals convergent evolution of venom in eulipotyphlan mammals. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 25745-25755.	7.1	42
66	Missiles of Mass Disruption: Composition and Glandular Origin of Venom Used as a Projectile Defensive Weapon by the Assassin Bug Platymeris rhadamanthus. Toxins, 2019, 11, 673.	3.4	16
67	Habu coagulotoxicity: Clinical implications of the functional diversification of Protobothrops snake venoms upon blood clotting factors. Toxicology in Vitro, 2019, 55, 62-74.	2.4	27
68	Mud in the blood: Novel potent anticoagulant coagulotoxicity in the venoms of the Australian elapid snake genus Denisonia (mud adders) and relative antivenom efficacy. Toxicology Letters, 2019, 302, 1-6.	0.8	21
69	Factor X activating Atractaspis snake venoms and the relative coagulotoxicity neutralising efficacy of African antivenoms. Toxicology Letters, 2018, 288, 119-128.	0.8	34
70	The assassin bug Pristhesancus plagipennis produces two distinct venoms in separate gland lumens. Nature Communications, 2018, 9, 755.	12.8	67
71	Ancient Diversification of Three-Finger Toxins in Micrurus Coral Snakes. Journal of Molecular Evolution, 2018, 86, 58-67.	1.8	30
72	Giant fish-killing water bug reveals ancient and dynamic venom evolution in Heteroptera. Cellular and Molecular Life Sciences, 2018, 75, 3215-3229.	5.4	31

#	Article	IF	CITATIONS
73	Harden up: metal acquisition in the weaponized ovipositors of aculeate hymenoptera. Zoomorphology, 2018, 137, 389-406.	0.8	9
74	Coagulotoxic Cobras: Clinical Implications of Strong Anticoagulant Actions of African Spitting Naja Venoms That Are Not Neutralised by Antivenom but Are by LY315920 (Varespladib). Toxins, 2018, 10, 516.	3.4	75
75	Buzz Kill: Function and Proteomic Composition of Venom from the Giant Assassin Fly Dolopus genitalis (Diptera: Asilidae). Toxins, 2018, 10, 456.	3.4	12
76	Entomo-venomics: The evolution, biology and biochemistry of insect venoms. Toxicon, 2018, 154, 15-27.	1.6	67
77	Coagulotoxicity of Bothrops (Lancehead Pit-Vipers) Venoms from Brazil: Differential Biochemistry and Antivenom Efficacy Resulting from Prey-Driven Venom Variation. Toxins, 2018, 10, 411.	3.4	67
78	Three-Finger Toxin Diversification in the Venoms of Cat-Eye Snakes (Colubridae: Boiga). Journal of Molecular Evolution, 2018, 86, 531-545.	1.8	14
79	Does size matter? Venom proteomic and functional comparison between night adder species (Viperidae:) Tj ETQq Toxicology and Pharmacology, 2018, 211, 7-14.	1 1 0.784 2.6	314 rgBT / 13
80	Snakebite: When the Human Touch Becomes a Bad Touch. Toxins, 2018, 10, 170.	3.4	70
81	Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Molecular and Cellular Proteomics, 2017, 16, 552-566.	3.8	53
82	The Evolution of Fangs, Venom, and Mimicry Systems in Blenny Fishes. Current Biology, 2017, 27, 1184-1191.	3.9	36
83	Endless forms most beautiful: the evolution of ophidian oral glands, including the venom system, and the use of appropriate terminology for homologous structures. Zoomorphology, 2017, 136, 107-130.	0.8	38
84	Differential procoagulant effects of saw-scaled viper (Serpentes: Viperidae: Echis) snake venoms on human plasma and the narrow taxonomic ranges of antivenom efficacies. Toxicology Letters, 2017, 280, 159-170.	0.8	69
85	The Bold and the Beautiful: a Neurotoxicity Comparison of New World Coral Snakes in the Micruroides and Micrurus Genera and Relative Neutralization by Antivenom. Neurotoxicity Research, 2017, 32, 487-495.	2.7	21
86	Viper Venom Botox: The Molecular Origin and Evolution of the Waglerin Peptides Used in Anti-Wrinkle Skin Cream. Journal of Molecular Evolution, 2017, 84, 8-11.	1.8	17
87	Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler,) Tj ETQq1 1 (). <u>78</u> 4314	rgBT /Overl
88	The Cardiovascular and Neurotoxic Effects of the Venoms of Six Bony and Cartilaginous Fish Species. Toxins, 2017, 9, 67.	3.4	3
89	Venom Profiling of a Population of the Theraphosid Spider Phlogius crassipes Reveals Continuous Ontogenetic Changes from Juveniles through Adulthood. Toxins, 2017, 9, 116.	3.4	20
90	Coagulating Colubrids: Evolutionary, Pathophysiological and Biodiscovery Implications of Venom Variations between Boomslang (Dispholidus typus) and Twig Snake (Thelotornis mossambicanus). Toxins, 2017, 9, 171.	3.4	33

#	Article	IF	CITATIONS
91	Enter the Dragon: The Dynamic and Multifunctional Evolution of Anguimorpha Lizard Venoms. Toxins, 2017, 9, 242.	3.4	37
92	Rapid Radiations and the Race to Redundancy: An Investigation of the Evolution of Australian Elapid Snake Venoms. Toxins, 2016, 8, 309.	3.4	62
93	Structure-Activity Relationship of Chlorotoxin-Like Peptides. Toxins, 2016, 8, 36.	3.4	26
94	Venoms of Heteropteran Insects: A Treasure Trove of Diverse Pharmacological Toolkits. Toxins, 2016, 8, 43.	3.4	62
95	Canopy Venom: Proteomic Comparison among New World Arboreal Pit-Viper Venoms. Toxins, 2016, 8, 210.	3.4	7
96	A Tricky Trait: Applying the Fruits of the "Function Debate―in the Philosophy of Biology to the "Venom Debate―in the Science of Toxinology. Toxins, 2016, 8, 263.	3.4	25
97	The Snake with the Scorpion's Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus). Toxins, 2016, 8, 303.	3.4	53
98	Toxins: State of Journal Report, 2016. Toxins, 2015, 7, 5459-5461.	3.4	0
99	Weaponization of a Hormone: Convergent Recruitment of Hyperglycemic Hormone into the Venom of Arthropod Predators. Structure, 2015, 23, 1283-1292.	3.3	66
100	Centipede Venom: Recent Discoveries and Current State of Knowledge. Toxins, 2015, 7, 679-704.	3.4	84
101	Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins, 2015, 7, 2251-2271.	3.4	169
102	Fossilized Venom: The Unusually Conserved Venom Profiles of Heloderma Species (Beaded Lizards and) Tj ETQq0 (0.7gBT /0 3.4	Ygrlock 10
103	Multifunctional warheads: Diversification of the toxin arsenal of centipedes via novel multidomain transcripts. Journal of Proteomics, 2014, 102, 1-10.	2.4	36
104	Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus) Tj ETQq0 0 0 rgB7 99, 68-83.	「/Overlocl 2.4	₹ 10 Tf 50 2: 114
105	Clawing through Evolution: Toxin Diversification and Convergence in the Ancient Lineage Chilopoda (Centipedes). Molecular Biology and Evolution, 2014, 31, 2124-2148.	8.9	100
106	Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications, 2014, 5, 3521.	12.8	275
107	Diversification of a single ancestral gene into a successful toxin superfamily in highly venomous Australian funnel-web spiders. BMC Genomics, 2014, 15, 177.	2.8	49
108	Molecular Phylogeny and Evolution of the Proteins Encoded by Coleoid (Cuttlefish, Octopus, and) Tj ETQq0 0 0 rg	BT/Overlo 1.8	ck 10 Tf 50

#	Article	IF	CITATIONS
109	Mad, bad and dangerous to know: the biochemistry, ecology and evolution of slow loris venom. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2013, 19, 21.	1.4	162
110	Complex cocktails: the evolutionary novelty of venoms. Trends in Ecology and Evolution, 2013, 28, 219-229.	8.7	785
111	ANAEROBIC AND AEROBIC BACTERIOLOGY OF THE SALIVA AND GINGIVA FROM 16 CAPTIVE KOMODO DRAGONS (⟨i⟩VARANUS KOMODOENSIS⟨ i⟩): NEW IMPLICATIONS FOR THE "BACTERIA AS VENOM―MODE Journal of Zoo and Wildlife Medicine, 2013, 44, 262-272.	Lo.6	30
112	Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins. Toxins, 2013, 5, 2172-2208.	3.4	111
113	Evolution Stings: The Origin and Diversification of Scorpion Toxin Peptide Scaffolds. Toxins, 2013, 5, 2456-2487.	3.4	79
114	A Proteomics and Transcriptomics Investigation of the Venom from the Barychelid Spider Trittame loki (Brush-Foot Trapdoor). Toxins, 2013, 5, 2488-2503.	3.4	68
115	Origin and Functional Diversification of an Amphibian Defense Peptide Arsenal. PLoS Genetics, 2013, 9, e1003662.	3.5	47
116	Venom Down Under: Dynamic Evolution of Australian Elapid Snake Toxins. Toxins, 2013, 5, 2621-2655.	3.4	55
117	Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biology Letters, 2012, 8, 853-855.	2.3	65
118	Structural and Molecular Diversification of the Anguimorpha Lizard Mandibular Venom Gland System in the Arboreal Species Abronia graminea. Journal of Molecular Evolution, 2012, 75, 168-183.	1.8	19
119	Toxinology of Venoms from Five Australian Lesser Known Elapid Snakes. Basic and Clinical Pharmacology and Toxicology, 2012, 111, 268-274.	2.5	16
120	Novel Venom Proteins Produced by Differential Domain-Expression Strategies in Beaded Lizards and Gila Monsters (genus Heloderma). Molecular Biology and Evolution, 2010, 27, 395-407.	8.9	85
121	Functional and Structural Diversification of the Anguimorpha Lizard Venom System. Molecular and Cellular Proteomics, 2010, 9, 2369-2390.	3.8	70
122	Evolution and diversification of the Toxicofera reptile venom system. Journal of Proteomics, 2009, 72, 127-136.	2.4	91
123	The Toxicogenomic Multiverse: Convergent Recruitment of Proteins Into Animal Venoms. Annual Review of Genomics and Human Genetics, 2009, 10, 483-511.	6.2	683
124	A central role for venom in predation by <i>Varanus komodoensis</i> (Komodo Dragon) and the extinct giant <i>Varanus</i> (<i>Megalania</i>) <i>priscus</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8969-8974.	7.1	120
125	Evolutionary origin and development of snake fangs. Nature, 2008, 454, 630-633.	27.8	149
126	Evolution of an Arsenal. Molecular and Cellular Proteomics, 2008, 7, 215-246.	3.8	298

#	Article	IF	CITATIONS
127	The in vitro Neurotoxic and Myotoxic Effects of the Venom from the Suta Genus (Curl Snakes) of Elapid Snakes. Basic and Clinical Pharmacology and Toxicology, 2007, 101, 407-410.	2.5	6
128	Expression pattern of three-finger toxin and phospholipase A2 genes in the venom glands of two sea snakes, Lapemis curtus and Acalyptophis peronii: comparison of evolution of these toxins in land snakes, sea kraits and sea snakes. BMC Evolutionary Biology, 2007, 7, 175.	3.2	47
129	Talking Defensively, a Dual Use for the Brachial Gland Exudate of Slow and Pygmy Lorises. , 2007, , 253-272.		67
130	Early evolution of the venom system in lizards and snakes. Nature, 2006, 439, 584-588.	27.8	531
131	Denmotoxin, a Three-finger Toxin from the Colubrid Snake Boiga dendrophila (Mangrove Catsnake) with Bird-specific Activity. Journal of Biological Chemistry, 2006, 281, 29030-29041.	3.4	183
132	Putting the Brakes on Snake Venom Evolution: The Unique Molecular Evolutionary Patterns of Aipysurus eydouxii (Marbled Sea Snake) Phospholipase A2 Toxins. Molecular Biology and Evolution, 2005, 22, 934-941.	8.9	78
133	From genome to "venome": Molecular origin and evolution of the snake venom proteome inferred from phylogenetic analysis of toxin sequences and related body proteins. Genome Research, 2005, 15, 403-420.	5.5	402
134	Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochemical and Biophysical Research Communications, 2005, 327, 1011-1015.	2.1	65
135	Pharmacological characterisation of a neurotoxin from the venom of Boiga dendrophila (Mangrove) Tj ETQq1 1 (0.784314	rgBT/Overlo
136	In vitro neuromuscular activity of â€~colubrid' venoms: clinical and evolutionary implications. Toxicon, 2004, 43, 819-827.	1.6	30
137	The in vitro neuromuscular activity of Indo-Pacific sea-snake venoms: efficacy of two commercially available antivenoms. Toxicon, 2004, 44, 193-200.	1.6	42
138	Isolation of a Neurotoxin (?-colubritoxin) from a Nonvenomous Colubrid: Evidence for Early Origin of Venom in Snakes. Journal of Molecular Evolution, 2003, 57, 446-452.	1.8	138
139	Comparison of the in vitro neuromuscular activity of venom from three australian snakes (Hoplocephalus stephensi, Austrelaps superbus and Notechis scutatus): Efficacy of tiger snake antivenom. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 127-132.	1.9	26
140	Analysis of Colubroidea snake venoms by liquid chromatography with mass spectrometry: evolutionary and toxinological implications. Rapid Communications in Mass Spectrometry, 2003, 17, 2047-2062.	1.5	141
141	Effectiveness of Snake Antivenom: Species and Regional Venom Variation and Its Clinical Impact. Toxin Reviews, 2003, 22, 23-34.	1.5	64
142	Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Communications in Mass Spectrometry, 2002, 16, 600-608.	1.5	70
143	Structure–function properties of venom components from Australian elapids. Toxicon, 1999, 37, 11-32.	1.6	85