Christy C Bridges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7948553/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Are Pediatric Providers On-Board With Current Recommendations Related to Maternal Mental Health Screening at Well-Child Visits in the State of Georgia?. Journal of the American Psychiatric Nurses Association, 2022, 28, 444-454.	1.0	5
2	Hepatic processing of mercuric ions facilitates delivery to renal proximal tubules. Toxicology Letters, 2022, 359, 1-9.	0.8	2
3	Transport and Toxicity of Methylmercury-Cysteine in Cultured BeWo Cells. International Journal of Molecular Sciences, 2022, 23, 394.	4.1	9
4	Transporters and Toxicity: Insights From the International Transporter Consortium Workshop 4. Clinical Pharmacology and Therapeutics, 2022, 112, 527-539.	4.7	4
5	Knowledge of and Attitudes Toward Perinatal Home Visiting in Women with Highâ€Risk Pregnancies. Journal of Midwifery and Women's Health, 2021, 66, 227-232.	1.3	3
6	Prophylactic supplementation with selenium alters disposition of mercury in aged rats. Experimental Gerontology, 2021, 149, 111289.	2.8	3
7	Co-administration of Selenium with Inorganic Mercury Alters the Disposition of Mercuric Ions in Rats. Biological Trace Element Research, 2020, 195, 187-195.	3.5	7
8	Reaction of Cyanide with Hg ⁰ -Contaminated Gold Mining Tailings Produces Soluble Mercuric Cyanide Complexes. Chemical Research in Toxicology, 2020, 33, 2834-2844.	3.3	14
9	Sex differences in renal handling of inorganic mercury in aged rats. Current Research in Toxicology, 2020, 1, 1-4.	2.7	1
10	Training Frontline Providers in the Detection and Management of Perinatal Mood and Anxiety Disorders. Journal of Women's Health, 2020, 29, 889-890.	3.3	11
11	Chronic kidney disease in pregnant mothers affects maternal and fetal disposition of mercury. Reproductive Toxicology, 2020, 93, 137-145.	2.9	2
12	Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation. Redox Biology, 2019, 26, 101300.	9.0	13
13	A Case of Accidental Mercury Intoxication. Journal of Emergency Medicine, 2019, 56, 275-278.	0.7	17
14	Chemical analysis of Hg0-containing Hindu religious objects. PLoS ONE, 2019, 14, e0226855.	2.5	5
15	Potential mechanisms of cellular injury following exposure to a physiologically relevant species of inorganic mercury. Toxicology Letters, 2019, 304, 13-20.	0.8	20
16	Pregnancy Alters Renal and Blood Burden of Mercury in Females. Biological Trace Element Research, 2018, 186, 9-11.	3.5	2
17	Disposition of methylmercury over time in a 75% nephrectomized rat model. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 349-360.	2.3	0
18	MRP2 and the Transport Kinetics of Cysteine Conjugates of Inorganic Mercury. Biological Trace Element Research, 2018, 184, 279-286.	3.5	7

CHRISTY C BRIDGES

#	Article	IF	CITATIONS
19	Exposure to mixtures of mercury, cadmium, lead, and arsenic alters the disposition of single metals in tissues of Wistar rats. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 1246-1256.	2.3	13
20	The Neonatal Intensive Care Unit: Environmental Stressors and Supports. International Journal of Environmental Research and Public Health, 2018, 15, 60.	2.6	59
21	Oral exposure of pregnant rats to toxic doses of methylmercury alters fetal accumulation. Reproductive Toxicology, 2017, 69, 265-275.	2.9	6
22	The aging kidney and the nephrotoxic effects of mercury. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2017, 20, 55-80.	6.5	86
23	Mechanisms involved in the transport of mercuric ions in target tissues. Archives of Toxicology, 2017, 91, 63-81.	4.2	129
24	Chronic Kidney Disease and Exposure to Nephrotoxic Metals. International Journal of Molecular Sciences, 2017, 18, 1039.	4.1	252
25	Compensatory Renal Hypertrophy and the Uptake of CysteineS-Conjugates of Hg2+in Isolated S2 Proximal Tubular Segments. Toxicological Sciences, 2016, 154, 278-288.	3.1	3
26	Compensatory renal hypertrophy and the handling of an acute nephrotoxicant in a model of aging. Experimental Gerontology, 2016, 75, 16-23.	2.8	12
27	Toxicological significance of renal Bcrp: Another potential transporter in the elimination of mercuric ions from proximal tubular cells. Toxicology and Applied Pharmacology, 2015, 285, 110-117.	2.8	26
28	Disposition of inorganic mercury in pregnant rats and their offspring. Toxicology, 2015, 335, 62-71.	4.2	26
29	Novel Hg2+-Induced Nephropathy in Rats and Mice Lacking Mrp2: Evidence of Axial Heterogeneity in the Handling of Hg2+ Along the Proximal Tubule. Toxicological Sciences, 2014, 142, 250-260.	3.1	25
30	Aging and the disposition and toxicity of mercury in rats. Experimental Gerontology, 2014, 53, 31-39.	2.8	30
31	The role of hyaluronic acid in SEB-induced acute lung inflammation. Clinical Immunology, 2013, 146, 56-69.	3.2	19
32	Structural characterization of 1,3-propanedithiols that feature carboxylic acids: Homologues of mercury chelating agents. Polyhedron, 2013, 64, 268-279.	2.2	0
33	Clutathione Status and the Renal Elimination of Inorganic Mercury in the Mrp2â^'/â^' Mouse. PLoS ONE, 2013, 8, e73559.	2.5	22
34	Absence of Mrp2 leads to differences in severity and pattern of mercury nephrotoxicity in mice. FASEB Journal, 2013, 27, 889.6.	0.5	0
35	The Role of Hyaluronic Acid in SEBâ€Induced Acute Lung Inflammation. FASEB Journal, 2013, 27, 1166.8.	0.5	0
36	Placental and fetal disposition of mercuric ions in rats exposed to methylmercury: Role of Mrp2. Reproductive Toxicology, 2012, 34, 628-634.	2.9	23

CHRISTY C BRIDGES

#	Article	IF	CITATIONS
37	New insights into the metabolism of organomercury compounds: Mercury-containing cysteine S-conjugates are substrates of human glutamine transaminase K and potent inactivators of cystathionine Î ³ -lyase. Archives of Biochemistry and Biophysics, 2012, 517, 20-29.	3.0	30
38	Relationships between the Renal Handling of DMPS and DMSA and the Renal Handling of Mercury. Chemical Research in Toxicology, 2012, 25, 1825-1838.	3.3	34
39	CD44 as a novel target for treatment of staphylococcal enterotoxin B-induced acute inflammatory lung injury. Clinical Immunology, 2012, 144, 41-52.	3.2	15
40	MRP2 and the handling of mercuric ions in rats exposed acutely to inorganic and organic species of mercury. Toxicology and Applied Pharmacology, 2011, 251, 50-58.	2.8	37
41	Transport of Inorganic Mercury and Methylmercury in Target Tissues and Organs. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2010, 13, 385-410.	6.5	195
42	Seventy-Five Percent Nephrectomy and the Disposition of Inorganic Mercury in 2,3-Dimercaptopropanesulfonic Acid-Treated Rats Lacking Functional Multidrug-Resistance Protein 2. Journal of Pharmacology and Experimental Therapeutics, 2010, 332, 866-875.	2.5	9
43	Ionic and Molecular Mimicry and the Transport of Metals. , 2010, , 241-294.		5
44	Molecular and Cellular Biology of Mercury in the Kidneys. , 2010, , 35-77.		2
45	Effect of DMPS and DMSA on the Placental and Fetal Disposition of Methylmercury. Placenta, 2009, 30, 800-805.	1.5	34
46	MRP2 involvement in renal proximal tubular elimination of methylmercury mediated by DMPS or DMSA. Toxicology and Applied Pharmacology, 2009, 235, 10-17.	2.8	31
47	Multidrug Resistance Proteins and the Renal Elimination of Inorganic Mercury Mediated by 2,3-Dimercaptopropane-1-Sulfonic Acid and Meso-2,3-dimercaptosuccinic Acid. Journal of Pharmacology and Experimental Therapeutics, 2008, 324, 383-390.	2.5	59
48	MRP2 and the DMPS- and DMSA-Mediated Elimination of Mercury in TRâ^' and Control Rats Exposed to Thiol S-Conjugates of Inorganic Mercury. Toxicological Sciences, 2008, 105, 211-220.	3.1	44
49	Transport of thiol-conjugates of inorganic mercury in human retinal pigment epithelial cells. Toxicology and Applied Pharmacology, 2007, 221, 251-260.	2.8	31
50	Progesterone Inhibits Folic Acid Transport in Human Trophoblasts. Journal of Membrane Biology, 2007, 216, 143-152.	2.1	23
51	Molecular Mimicry as a Mechanism for the Uptake of CysteineS-Conjugates of Methylmercury and Inorganic Mercury. Chemical Research in Toxicology, 2006, 19, 1117-1118.	3.3	14
52	System B0,+ and the Transport of Thiol-S-Conjugates of Methylmercury. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 948-956.	2.5	25
53	Role of System ATB 0,+ in the Transport of Cysteine S onjugates of Methylmercury. FASEB Journal, 2006, 20, A1138.	0.5	0
54	Mercury is Transported by the Retinal Pigment Epithelium as an S onjugate of Cysteine. FASEB Journal, 2006, 20, A1137.	0.5	0

CHRISTY C BRIDGES

#	Article	IF	CITATIONS
55	Cystine and glutamate transport in renal epithelial cells transfected with human system x—c. Kidney International, 2005, 68, 653-664.	5.2	3
56	Molecular and ionic mimicry and the transport of toxic metals. Toxicology and Applied Pharmacology, 2005, 204, 274-308.	2.8	639
57	Induction of Cystine-Glutamate Transporter xcâ^'by Human Immunodeficiency Virus Type 1 Transactivator Protein Tat in Retinal Pigment Epithelium. , 2004, 45, 2906.		40
58	Transport of Amino Acid-Based Prodrugs by the Na+- and ClCoupled Amino Acid Transporter ATB0,+ and Expression of the Transporter in Tissues Amenable for Drug Delivery. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 1138-1147.	2.5	131
59	Mercuric Conjugates of Cysteine Are Transported by the Amino Acid Transporter System b0,+: Implications of Molecular Mimicry. Journal of the American Society of Nephrology: JASN, 2004, 15, 663-673.	6.1	77
60	Homocysteine, System b0,+ and the Renal Epithelial Transport and Toxicity of Inorganic Mercury. American Journal of Pathology, 2004, 165, 1385-1394.	3.8	62
61	Identification of a novel Na+- and Clâ^'-coupled transport system for endogenous opioid peptides in retinal pigment epithelium and induction of the transport system by HIV-1 Tat. Biochemical Journal, 2003, 375, 17-22.	3.7	25
62	Transport of d-Serine via the Amino Acid Transporter ATB0,+ Expressed in the Colon. Biochemical and Biophysical Research Communications, 2002, 291, 291-295.	2.1	84
63	Transcellular transfer of folate across the retinal pigment epithelium. Current Eye Research, 2002, 24, 129-138.	1.5	41
64	Involvement of transporter recruitment as well as gene expression in the substrate-induced adaptive regulation of amino acid transport system A. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 15-21.	2.6	98
65	Transport of choline and its relationship to the expression of the organic cation transporters in a rat brain microvessel endothelial cell line (RBE4). Biochimica Et Biophysica Acta - Biomembranes, 2001, 1512, 299-307.	2.6	58
66	Regulation of taurine transporter expression by NO in cultured human retinal pigment epithelial cells. American Journal of Physiology - Cell Physiology, 2001, 281, C1825-C1836.	4.6	59
67	A comparison of caveolae and caveolin-1 to folate receptor alpha in retina and retinal pigment epithelium. The Histochemical Journal, 2001, 33, 149-158.	0.6	20
68	Molecular Characterization and Developmental Expression ofNORPEG, a Novel Gene Induced by Retinoic Acid. Journal of Biological Chemistry, 2001, 276, 2831-2840.	3.4	45
69	Expression and Differential Polarization of the Reduced-folate Transporter-1 and the Folate Receptor α in Mammalian Retinal Pigment Epithelium. Journal of Biological Chemistry, 2000, 275, 20676-20684. 	3.4	136
70	Regulation of the Reduced-Folate Transporter by Nitric Oxide in Cultured Human Retinal Pigment Epithelial Cells. Biochemical and Biophysical Research Communications, 1999, 257, 279-283.	2.1	29